操作

風力発電

風力発電(ふうりょくはつでん)とはの力(風力)を利用した発電方式である。 風力エネルギーは再生可能エネルギーのひとつとして、自然環境の保全、エネルギーセキュリティの確保可能なエネルギー源として認められ、多くの地に風力発電所や風力発電装置が建設されている[1]。 風力エネルギーの利用として、発電には発電風車(風力タービン)が、機械的動力を得るには粉挽き風車のような風車(ウインドミル)が、揚水や灌漑には揚水風車(風力ポンプ)が、さらに船の推進には帆が用いられている。巨大な風力発電所(ウインドファーム)は、送電線に接続されている何百機もの風車で構成されている。最近のEUの調査では、新規に建設された陸上風車は安価な発電源であり、石炭・ガスなどの化石燃料による発電所より安価で、競争力を持っているという。洋上風力は陸上より安定で強力であり視覚障害はないが、建設維持コストは陸上風力より高くなる。小型陸上風力発電所は送電網に連系して送電したり、あるいは連系しないで電気を自己消費される。 化石燃料の代替としての風力は、大量で、再生可能で、広域に分布し、クリーンで、稼働時に温暖化ガスを排出せず、少しの土地を使うだけである。2013年において、デンマークでは風力で3分の1以上の電気を賄い、世界では83か国が風力発電で電気が系統に連系されている。風力発電の設備容量は2014年6月に336GWまで急速に拡大し、世界の電気需要の4%が風力発電であり、なお急激に増加している[2]

風力発電の状況

ファイル:Global Wind Power Cumulative Capacity.svg
世界の風力発電の累計導入量(1996-2013年)[3]
ファイル:GlobalWindPowerCumulativeCapacity-withForecast.png
世界の風力発電の累計導入量予測[4]

風力発電は世界各国で活用されており、2010年では世界の電力需要量の2.3%であるが、2020年には4.5~11.5%に達するという調査もある[5]

2013年末の風力発電の累計導入量は318.1 GWに達しており、増加率は鈍化しているが、前年に比べて12%増加した。[6]。2013年から2018年までの、風力発電の増加は、12%から15%の伸びが予想されている。[6]。中国の伸びは顕著で、新規導入量は16.1GWである。また洋上風力の導入で英国の増加が特徴的である。[6]

風力発電機メーカー市場のシェアは2009年時点でデンマークヴェスタス社が12.5%で1位、米国GEエナジー社が12.4%で2位、以下中国華鋭風電が9.2%、ドイツエネルコンが8.5%、中国のGoldwindが7.2%、スペインGamesaが6.7%と続いている[7]

世界累計設置容量(2013年末)[8]
順位 国名 容量(GW)
1 中華人民共和国の旗 中国 91.4
2 アメリカ合衆国の旗 アメリカ合衆国 61.1
3 ドイツの旗 ドイツ 34.3
4 スペインの旗 スペイン 23.0
5 インドの旗 インド 20.2
6 イギリスの旗 イギリス 10.5
7 イタリアの旗 イタリア 8.6
8 フランスの旗 フランス 8.3
9 カナダの旗 カナダ 7.8
10  デンマーク 4.8
- その他 48.3
世界全体 318.1
世界新規設置容量(2013年)[8]
順位 国名 容量(GW)
1 中華人民共和国の旗 中国 16.1
2 ドイツの旗 ドイツ 3.24
3 イギリスの旗 イギリス 1.88
4 インドの旗 インド 1.73
5 カナダの旗 カナダ 1.60
6 アメリカ合衆国の旗 アメリカ合衆国 1.08
7 ブラジルの旗 ブラジル 0.95
8 ポーランドの旗 ポーランド 0.89
9  スウェーデン 0.72
10  ルーマニア 0.70
- その他 4.75
世界全体 35.29

歴史

イギリスでは1887年にグラスゴーのJ.ブライスが垂直風車により出力3kWの発電を開始したとされ、アメリカでは1888年にクリーブランドC.F.ブラッシュが直径17m144枚のブレードからなる巨大な多翼風車で12kWの風力発電を1908年まで20年間使用されたとされ、1891年にデンマークのアスコウ(Askov)でポール・ラ・クールによって風力発電研究所が設立され、風力発電で電気分解した水素と酸素で発電の実験が実施された[9]。日本では1949年に山田基博札幌に(株)山田風力電設工業所を設立し風車の本格的製造を開始した。オイルショックを機に風力発電等の代替エネルギーへの関心が高まり、1973年に足利工業大学三重大学で風力発電の研究開始、1975年に鶴岡高専山形大学で風車の研究が開始され、その後、複数の教育機関や企業が参入したものの、1980年代には石油の安定供給、価格下落により研究開発は下火になり、1990年代に入ると地球温暖化への対策の一環として再び、風力発電への関心が高まった。1970年代とは異なり、複合材料パワーエレクトロニクス数値流体力学によるシミュレーション技術の発展が追い風になり世界各地で普及が進む[10][11]

特性

風力発電は従来の集中型電源と様々な点で異なる特性を持つ。

長所

主に環境負荷の小ささ、化石燃料の使用量削減、エネルギー安全保障、産業振興・雇用創出などが挙げられる[1][12]

  • 二酸化炭素などの温室効果ガス排出量の低減効果がある。(#温室効果ガス排出量参照)
  • 比較的発電コストが低く、事業化が比較的容易である。(#費用対効果参照)
  • エネルギー自給率の向上が見込める。(#エネルギー収支参照)
  • 小規模分散型の電源であるため、事故や災害など有事の際の影響を最小限に抑え、全体の稼働率を高くできる。(#建設と保守参照)
  • 工期が短く、需要総量の変動に対応しやすい。また投資してから運転開始までの利子も少なく済む。(#建設と保守参照)
  • 運転用燃料を必要としないため、物価変動由来(インフレなど)の事業リスクを減らせる。(#費用対効果参照)
  • 大規模集中型の発電所に比較して、修理やメンテナンスに要する期間を短くできる[12]。(#建設と保守参照)
  • 離島など、燃料の確保や送電コストの高い地域の独立電源として活用できる[1][12]
  • 冷却水を必要としない[12]
  • 小型のものは需要地に隣接して設置可能であり、送電コストの低減に役立つ場合がある[12]
  • 個々の設備が比較的小規模で個人でも運用可能である[12]
  • 風が吹けば夜間を含めいつでも発電が可能である。

短所

主に出力電力の不安定・不確実性と、周辺の環境への悪影響の問題があり、特に設置場所の選定が重要となっている。

  • 風力原動機を設置する場所の風況が発電の採算性に大きく影響する。(#事前調査と発電量予測参照)
  • 風速の変動に伴って、出力の電圧や力率が需要と関係なく変動する。(#出力変動参照)
  • 台風サイクロンなどによる強風で、定格を大幅に超える速度で運転すると、風力発電機の破損を招く場合がある。(#強風参照)
  • 周囲に騒音被害を与える恐れがある。(#生活環境への影響参照)
  • 現時点ではコスト面で法的助成措置を必要とする場合が多い。また、系統の拡張などにある程度の追加費用を要するとされる。(#費用対効果参照)
  • ブレードに鳥が巻き込まれて死傷する場合がある。(#生態系への影響参照)大きい風力発電の場合
  • 落雷などで故障したり、事故の原因になる場合がある。(#事故参照)
  • 風車は年々、タワーは高く、ブレードは長くなる傾向にあり、それに伴い点検や補修に係るコストを増大させる(#ローター径と効率参照)
  • 風量によっては余剰電力を増大させる。
  • 地震によって発電停止することがある[13]

風力タービン

発電に使用される風車は風力タービン、風力発電機、風力発電装置などと呼ばれる。 形式としては水平軸のプロペラ型が最も多く用いられている。(風車参照)その他、用途に応じて垂直軸のダリウス型、ジャイロミル型、サボニウス型またはその併用型を用いる場合もある。また直線翼垂直軸型[14]、スクリューマグナス風車(マグヌス効果参照)もある。風車以外では、振動板に風を受け、圧電素子で電力を得る方法が研究されている。[15]

一般的な水平軸プロペラ式では大きく3つの構成要素からなる。

  • ローター部

ブレード(翼)、ローター軸、ハブなどで構成。風力タービンコストの約20%を占める。風の運動エネルギーを低速の回転エネルギーに変換する。

  • 発電機部

風力タービンコストの約34%を占める。発電機軸、発電機[16][17]、制御機器、増速機(遊星歯車など)、[18] などで構成され、ナセルと呼ばれる筐体に収納される。増速機は発電に適した回転速度に調節する役割がある。

  • 支持・構造部

風力タービンコストの約15%を占める。基礎、タワー、ヨー制御システムなど[19] で構成される。

ローター径と効率

風力原動機はローターの直径が大型化するに伴い効率が向上し、採算性も向上する。地上付近では地面や障害物等による摩擦があり、高所の方がより効率よく風を捉えられるのが大きな理由である。このため発電事業用の風力原動機は大型化する傾向にある。2005年は、世界的に2.5MWクラスが中心であった。2008年には5MWの機種も登場している[20]。 しかしながら、保守の観点から考えるならば、ロータ径が大型化するにつれて、タワーは高くなり、ブレードは長くなることから、点検や補修に困難が生じやすくなる。

発電量はローターの半径の2乗、風速の3乗に比例する。効率は最高59%である(ベッツの法則[21]。1919年、ドイツのアルバート・ベッツにより導き出された。

日本メーカーでは1MWクラスが主流であったが、近年、2〜2.4MWクラスのものが商品化された[22]。また、家庭への普及を狙って小規模の風力原動機を商品開拓する動きもある[23]

建設と保守

ファイル:Turbine Blade Convoy Passing through Edenfield.jpg
風力発電機のブレードを設置場所まで運んでいる様子(イギリス)

風力発電機の設置工事に必要な期間(工期)は、規模や環境にもよるが、概して他の発電方式よりも短い。1基では通常3〜4ヶ月とされる[24]。20基程度では10〜11ヶ月、50〜100基程度の大規模な集合型風力発電所でも1〜2年ほどの例がある。 デンマークの沖合6-15kmに2MW基を80基、合計160MWを建設した実例では、現場での建設作業は約半年、製造から含めても約1年半で済んでいる[25]。これは他の大規模集中型発電所(原発地熱発電所など)に比べると格段に短い。これは需要構造の変化への対応や機器の更新を容易にする他、工事期間中の利子も低く抑える効果がある。例えば、下記のような利益が得られる。

  • 集中型発電所では工期が長い分、将来の需要増加の可能性を見越して常に多めに設備を建設しておく必要があり、また一基当たりの容量が大きい分、見込み違いによる無駄も多くなりやすい。しかし風力のような小規模分散型電源を用いる場合は、比較的短期かつ小さい単位での増設や移設が可能である[12]
  • 定期保守や修理に要する期間が短い(さらに多くの場合、個々の設備ごとに時期をずらして行うことが可能である)ため、系全体の稼働可能率をその分高くできる[12]
  • 大規模な集合型風力発電所では、複数の工区に分けて順番に建設・稼働開始させ、意図的に将来の機器の更新時期をずらす場合がある。これによって機器の更新時期でも集合型風力発電所の大部分は稼働を続けることができ、需要の変化などによる財務リスクも抑制できる。また風力発電機は現在でも活発に技術開発が行わ れており、毎年のように性能が向上した機種が登場している。このため風力発電機を段階的に建設することで、後で着工・稼働開始する工区になるほど、より高性能の機種を導入できる利点がある[26]

ただし、工事に先立って風況調査などにある程度の準備期間が必要になる。また近年の需要急増により、納期が1年を超える例も見られる[27]

保守については、一般に風力発電機は大規模集中型発電所(原発・大型火力など)に比して修理や点検が比較的容易であり、必要な時間も短くできるとされる[12]。 ただし日本の場合は2008年時点で風力発電機の8割程度が輸入品であるため、修理部品などは海外から取り寄せる場合が多くなる。そのため部品が届くまで数ヶ月かかることがある[28]

風力発電所の形式

集合型風力発電所

集合型風力発電所は、多数の風力タービンを1カ所に設置し発電する施設。ウィンドファーム(wind farm)とも呼ばれる。大規模なものでは数百平方マイルの広大な敷地に数百の風力タービンが並ぶが、タービンとタービンの間の土地は農耕など他の用途に利用できる。洋上に設置される場合もある。

可倒式風力発電設備

可倒式風力発電設備は、可倒式の風車を利用した発電施設。倒すことで台風の被害を防ぐ事が出来る、メンテナンスを地上で行える、設置に大型の重機を必要としないと言った利点がある[29][30]

洋上風力発電所

ファイル:DanishWindTurbines.jpg
洋上風力発電所(コペンハーゲン沖のMiddelgrunden洋上風力発電所
ファイル:OffshoreWindPower-CumulativeCapacity.PNG
洋上風力発電の累積設備容量推移[31]

海上に風力発電機を設置することを洋上風力発電(オフショア風力発電、海上風力発電、海洋風力発電)と呼ぶ。地形や建物による影響が少なく、より安定した風力発電が可能となる。また立地確保、景観、騒音の問題も緩和できる。2010年末時点で、欧州を中心に3GW以上が導入されている[31]

水深が浅い海域において海底に基礎を建て、大規模なウインドファームを建設する例が各国で見られる[32][33]。元々はデンマークを中心に建設が進められてきたが、近年になって欧州全域に広がる勢いをみせており、特に英国における伸びが著しい。英国政府が掲げるその目標は、2020年までに洋上風力発電設置容量33GW(Round 1,2,3合計)導入目標という壮大なものである。ドイツにおいても、北海における国家プロジェクトAlpha Ventus 60MWを皮切りに、2009年以降の導入加速が見込まれる。日本においても港湾内などにおける建設例が見られ[34]、2010年3月には茨城県にて初の港湾外への設置事例が稼働を開始している[35]。また水深が深い場所のために、浮体式の基礎を用いる方式も研究されている。2009年にノルウェーにおいて、フルスケールとしては世界初の浮体式洋上風力発電施設Hywindが建設さた[36]。沖合いでの洋上風力発電(沖合風力発電)については、電力の陸上への送電が困難であるため、発電した電気で水素を製造し、これを圧縮したり、有機ハイドライドに吸着させる等により輸送することが研究されており、これにより電力変動の問題も解決されることが期待されている。

洋上水素製造構想

九州大学の研究者を中心に、海上に巨大な風力発電所を造り、新しいエネルギーとして活用しようという構想の研究会が発足している[37]。 構想によると、海上にはちのす状に浮かべた六角形のコンクリート構造物(一辺300メートル)の上に、従来の2倍以上の風力を得る直径100メートルの風力原動機を設置。送電線は使わず、得られた電力で海水を電気分解して水素を作り、その水素を船で陸に輸送して水素発電や燃料電池に使うというもの。高強度の新素材や効率的な風車、水素貯蔵などの最新技術を組み合わせ、原発1基分に相当する100万キロワット級の発電を低コストで目指している。新素材の耐用年数は100年以上とされ、発電コストは原発の半分以下に抑えられる。六角形の浮体の内部を養殖場にすることで、漁業補償の問題も解決できるとしている。資金の目途が付けば6〜7年で技術確立が可能としている。

空中風力発電構想

米国、ヨーロッパでは次世代の風力発電として、強くて安定した風が得られる上空に風船などで風力原動機を持ち上げて設置する空中風力発電機(AWT,英語: Airborne wind turbine)などのアイデアが検討されている[38] [39][40][41][42][43]

各地域の状況

欧州

2006年の欧州での導入量は2005年に比べ約19%増加し、48027MWに達した。設備全体による年間発電量は約100TWhに達する見込みである。これは2005年のEU全体の電力消費量の3%に相当する。2020年にはEUの全電力需要の13%を風力だけで賄える見込みである[44]。 政策的には、殆どの国が固定価格買い取り制度(FIT)制と呼ばれる制度を軸として普及を進めている(再生可能エネルギー#普及政策参照)。 普及の最も進んでいるデンマークでは既に国全体の電力の2割が風力発電によって賄われ、なおも普及を進めており、2025年には5割以上に増やせるとしている[45]スペインでは2010年に風力発電で電力需要の16.6%を供給し、また電力由来の二酸化炭素排出量の26%を削減した[46]。非化石エネルギーのシェア増加により電力コストが抑えられて隣国フランスよりも安価となり、2010年には8.3TWhを輸出した[47]。また2011年3月には風力発電による月間の発電量が21%を占め、原子力やガス複合火力を抜いて最大の電力供給源となった[47]

フランス

ドイツ

米国

米国は、以前からカリフォルニア州テキサス州で大規模な風力発電ファームを建設していたが、2008年5月にエネルギー省(DOE)が2030年までに電力需要の20%に相当する約290GWを風力発電で賄うという目標を立ててからさらに設備量が増えた。しかし2010年には金融危機等の影響で市場が前年より縮小し、中国に累計導入量で抜かれた[5]

カリフォルニア州には2014年1月現在で世界で最大の風力発電所であるアルタウインドエナジーセンターが存在する。大手の風力発電機製造企業としてGEエナジーが存在する。

日本

日本では欧米諸国に比して普及が進んでいない。理由として、台風に耐えうる風車を施設すると欧米と比較してコストが上がることや、大量の風車を設置できるだけの平地の確保が困難なこと、元々日本ではクリーンエネルギーとして太陽光発電を重視してきた歴史があることなどが挙げられる。また、アメリカやドイツは原子力発電所の新設を政策的に停止しているため風力発電への依存度を増している。

日本の電力会社は風力発電事業に消極的であるが、自治体による「自治体風車」や市民グループによる「市民風車」等のプロジェクトの取り組みが進んでいる。[48]

日本では、2004年ごろから風力発電が本格的に導入が開始され、以後、徐々に普及してきており、2014年時点で全国に約2000基、発電能力の合計は約250万キロワットとなっている。ただ、普及に伴い、風車部分が丸ごと落ちるなど、惨事に繋がりかねない事故も起こるようになっており、対策が検討されている[49]。日本の風力発電所で有名なのは苫前町稚内市等が挙げられる。

費用と効率性

費用対効果

風力発電は、水力発電に次いで再生可能エネルギーの中では採算性が高く、「2500-5000kw級の大口径風車・電池コストを考えないならば」天然ガス価格百万Btuあたり10-20ドルでは、天然ガス火力や原子力と競争可能なコストまで下がっている。(但し、米国ではシェールガス乱掘でガス価格が5ドルに下がったために、2013年現在では 再びガス火力が有利になっている)。 但し、導入に際しての「幹線送電線までのアクセス送電線建設コスト」「電池コスト」を補うために、直接・間接的な支援を行う国が多い。

ドイツは開発適地の枯渇とともに頭打ちになったが、中国と米国が急速に設備容量を増やして、両国とも風力発電量は日本における水力発電の設備容量1000億kwhを追い抜いており、米国のグリーンニューデイールを支えている

また、ドイツで始まった「固定価格買取制度」は風力発電会社の収入を安定化させて、風力発電会社の社債を、投資可能な格付けの金融商品に育て上げるのに成功した。老人が 預金から、より利率の良い風力発電投資信託にシフトすることで、風力発電建設が急速に進み、経済成長に寄与した。 (但し、風力資源未開発地が枯渇するにつれ、ドイツ政府は、2013年時点で、風力より2-3倍コストが掛かる太陽電池を、時期尚早に「固定価格買取制度」の対象としたことや、その負担を事業者から消費者に転嫁したことから、天然ガス価格上昇とともに、ドイツの家庭電気料金が3倍に跳ね上がる原因となってしまった)

大規模に導入しているデンマークにおいては、風力発電の経費は過去20年間で80%以上削減され、通常電力と競争可能な水準まで低下した[50]。温暖化対策費まで考慮すると、欧州における風力は石炭火力より発電経費が一桁少ないとする試算もある[51]。なお、近年の資材の高騰により、装置価格の増加も報告されている[52]

風力発電は一度設置してしまえば、その後は、化石燃料の価格変動による影響がほぼ保守費用などに限られるため、その分事業が安定化する利点がある[12]

火力発電を減らして風力発電で代替するにあたっては、出力変動などの対策、および、送電網の拡張や予備発電設備容量の確保等が必要となる[52][53]。一般的には、程度の導入割合までは、その追加費用が実用的な範囲で済むとされる(例:[52][54][55])。欧州では域内での風力発電などの増加に対応した系統の拡張が検討されている[56]

導入規模の効果

ファイル:Street light.JPG
小型風力発電機の例
街路灯の頂上に設置し太陽光発電と併用

風力発電は小規模分散電源であり、導入規模や範囲が増すほど全体的な信頼性と安定性が高まり、発電コストも低減する。

  • 風力発電設備は普及クラスのものであれば、稼働可能率[57] 自体は非常に高くすることが可能であり、稼働可能率95%以上の例も多数報告されている。これは一般にメンテナンス等に要する時間が短いことによる。たとえ個々の風車の稼働可能率が低くても、導入数の増加や他の分散型電源との併用により、全体でみた稼働可能率は100%に近づく。これに対して一般的な大規模集中型発電所では、1990年頃の米国の例では原子力73%、化石燃料火力発電所の平均で85%、水力でも91%程度と報告されている([12] P242)。
  • 風力発電設備が稼働不可になる要因としては、風速不足を除くと落雷、故障、定期保守、系統の故障、などがある。英国における一例では、それぞれ原因の48%、37%、13%、2%を占めたと報告されている([12] P241)。風力は変動するため、個々の風車の稼働率は通常40%以下となる。
  • 異なる場所に分散して設置された風車同士は、距離が離れるに従って、出力変動の相関性が低くなる。特に速い(高い周波数の)変動においてこの傾向は顕著となり、合計の出力がある程度平滑される[58]。このため出力の平準化には、分散配置が有効とされる。ただし、完全に変動が無くなるわけではない。
  • 大規模化と分散配置により、大きな変動は残るものの、全体でみた変化の速度が遅くなり、電力網によるサポートがより容易となる。オランダ内の海岸沿いの6地域でを対象とした調査では、数時間程度の間隔で出力に大きな変動が見られるが、100万kW規模の変動が起こる確率は、その規模の火力発電設備が強制停止される頻度と同程度であると報告されている[12]
  • 小規模な導入量では、出力変動への対策コストは必要以上に高く算出される[59]
  • 系統連系する際に許容できる導入量の見積もりは、シミュレーションの前提条件の小さな違いで大きく異なる結果となる。このため変動の許容量を必要以上に小さく見積もっている例も散見される[60]

エネルギー収支

「生産から設置・運用〜廃棄に至るまでのライフサイクル中に投入するエネルギー」を「風力により生み出すエネルギーによって節約できる」までの時間をエネルギーペイバックタイム(EPT)、また寿命との比をエネルギー収支比(EPR)という。原動機の性能および設置場所の風況に大きく左右されるが、通常EPTは数ヶ月程度[61][62][63] とされる。またエネルギー収支比は38〜54とも見積もられている[63]。大型化などの技術改良のほか、リサイクルや基礎部の再利用等によって今後も改善が見込まれている。

温室効果ガス排出量

風力発電の発電量当たりの温室効果ガス(GEG)排出量は小さく、日本では25〜34g-CO2/kWhなどの計算例がある[63](g-CO2/kWhはライフサイクル中に排出される温室効果ガス(GEG)を二酸化炭素(CO2)に換算し、発電量あたりに直した値)。この値は設置地点毎の風況や風車の性能に左右される。近年の大型で高性能な風車ならば、10g-CO2/kWhを切る場合もあるとされる[64]。設置効果は750kW機1基が500エーカー(約2平方km)の森林に相当するとも言われる[65]

日本の電力の平均GEG排出量は 約346g-CO2/kWh(発受電端、2001年)と計算されている。例えば寿命20年でGEG排出量が25g-CO2/kWhの場合、CO2ペイバックタイム(CO2的に「元が取れる」までの利用期間、CO2PT)は 20×(25/346)=1.45年 となる。10g-CO2/kWhならば約7ヶ月である。

寿命

大型機における原動機部分の寿命は通常20年程度[66][67] とされる(機種や条件によっては30年とする場合もある)。設計寿命は主に耐久性とコストのバランスで決定される。基礎部分の寿命は50年程度で設計し、2世代に亘って利用することが可能である。なお日本では減価償却資産の耐用年数が17年[68] とされることからこれを寿命の代わりに用いて計算する場合があるが、その分発電コストを5%程度高く見積もることになる。

寿命を迎えた原動機については、集中型発電所に比べ、更新で一度に止める風車の数が少なく工期も短いため、発電所全体の稼働状況に与える影響は少ないとされる。。

課題

諸課題の中でも(出力変動、強風対策などの)技術的課題については、性能や安全性の向上を狙った開発競争の焦点となっている。従来問題点とされてきた点の多くは技術的に対処が可能とされる。

人の健康及び生活環境への影響

風力発電の課題のひとつに騒音対策・低周波対策がある[69]

人家に近接して設置された場合に、近隣住民がめまい・動悸・耳鳴りなどの違和感を訴える例が出てきた。ブレードやタービン部が出す風切り音などの騒音低周波振動[脚注 1] が原因だろうと指摘されるようになった。日本各地で建設反対運動が起き、ドイツでは建設済みの発電所の撤去を命じる判決も出た。

騒音・低周波などが報道などで知られるようになり、設置計画に対して予定地の住民の反対運動がおきる例も出たため、騒音や低周波の対策が研究され、対策が検討されたり、それが具体的に打たれるようになった。

技術的な改善策の1つが、ブレードの断面の改良である。昔の風車では航空機用の翼断面を用いていたため、翼端周速が100〜120m/sに達し、騒音を大きくする要因となっていた。この翼端周速は風車専用の翼断面(厚翼)を用いることで大幅に低下し、現在は大型機でも60m/s程度となっている。さらに、多極式発電機の採用によるギアレス化(ギアノイズを排除)、ダウンウインド型からアップウインド型への移行(タワー下流の乱れた気流を横切る音を排除)などの対策により、騒音は200m-300m程度離れれば周囲の風音と区別がつかない水準(または「冷蔵庫程度の騒音」)にまで減少する[70]

また、風力発電機が立てられ始めた頃から、電波障害への懸念が相当数存在していたが実際にはそれほどの苦情は発生していない。電波障害となる要因には遮蔽障害と反射障害が考えられ、それぞれが回転翼部分と静止しているタワーとその先端のナセル部分が影響する可能性がある。21世紀現在の回転翼は全て繊維強化樹脂製であり電波に対して有意な影響を与えないと考えられるため、TV送信塔と住宅との間に設置しない事やナセル筐体の反射を低減する等のナセルとタワーの影響を事前に確認することで解決できる。また、ナセル内の発電機や付随する電力機器類からの電波ノイズの防止と遮蔽も考慮されなければならない[71]。 騒音以外にはシャドーフリッカーもしくはストロボ効果といわれる回転する羽によって断続的に横切る影が問題視され、これは生態系にも影響を与えると考えられている。対策としては今のところ太陽が低位置にある場合は風車を停止する以外にはない。風力発電装置は民家からできるだけはなれたところに設置することが望ましいとされており、計画段階からそれに注意すべきであるとされる[69]。イギリスでは民家から5kmの距離を取る様に定められている。

生態系への影響

ファイル:Tehachapi wind farm 3.jpg
Lattis構造のタワーが林立する古いウインドファーム(カリフォルニア、テハチャピ山地)。横桁に留まろうとして鳥類が誘引され被害に遭う。
ファイル:オトンルイ風力発電所 1.jpg
一般的な円柱状タワーを用いた風力発電所(オトンルイ風力発電所幌延町

鳥類レッドリストに該当するイヌワシクマタカオオタカフクロウノスリなどの希少猛禽類の幼鳥が、風力発電のブレード(回転羽根)に衝突(バードストライク)して死亡するケースがある。衝突死の多くは鳥が風車の回転範囲を通り抜けようとして、回転翼を避けずに体が切断されることにより生じる。一説にはモーションスミア現象によって高速の羽根が見えず、反対側の景色が透けて見えるため鳥が気づかないためといわれている。鳥類の目は人間に比べモーションスミアが起こりやすいという実験結果が出ている。鳥類は生息地の喪失、繁殖の妨害、採餌地の喪失、などの影響も受けているが、バードストライクは鳥の大群が通るルートの地域で多数発生していることがわかっている。設置する場所や形態の選定さえ適切ならば、通常の送電線以下の危険性しか及ぼさないとの報告もある(クローネ (Krone) 他)[70]。米国での年間平均バードストライク数は大型風車1基につき2.19羽(2001年)ドイツでは同0.5羽である(すべて狐などによる死骸持ち去り数を調整済み)。米国でのバードストライク総数は年間約10億羽であるが、風車によるものは0.01%であり、窓ガラスなどに比べてきわめて低い数字である。英国王立鳥類保護協会も「適切に設置された風力発電所は、鳥類に大きな脅威を及ぼさないと考える」と表明している[72]。スペインの影響調査では風車設置場所を飛行する鳥類の死亡率は0.1〜0.2%と報告されている。一方、2007年から三重県で行われた調査では、繁殖期のテリトリー密度と種数密度で1/4に減少したとする報告がある[73]

技術的には、下記のような対策が考慮される。

  • 予め設置地域の鳥類の生息状況を調べ、影響の少ない設置場所や形式を選定する。
  • 渡り鳥の接近をレーダーによって探知し、事前に回転翼を止めておく。
  • 風車付近での猛禽類の採餌行為を無くすため、周囲にテープや案山子を配置する[71]
  • 同じ発電量でも、ブレードの回転速度が遅くなるように設計する(翼断面や発電機によって決まる。#騒音参照)
  • タワー(支柱)に鳥が留まらないよう、横桁や出っ張りをなくした円柱状の設計とする。
  • 視認しやすい白色で塗装する。但し、目立たない色に塗装するという景観への配慮と矛盾する可能性がある。
  • フラッシュ光により警戒を促す。但し、景観問題への配慮が必要となる。
  • つば付きディフューザ風車や風レンズ風車のように、視認しやすい物を付ける。
  • 風車部分をネットで覆う。

他に渡り鳥の飛行ルートへの悪影響についても懸念されており[74][75]、渡りの重要なルートへの設置は避ける必要がある。

陸上風車の建設工事で生じる土地改変(森林伐採など)により流出する土砂が下流域を汚染する場合がある。特にサンショウウオなど希少動物は生息する源流の汚濁に敏感なため、悪影響が心配されている。洋上風車の場合も工事中に伴う海水の濁りなど、周辺環境への影響を完全に除くことは難しい。

景観

風力発電機の設置に当たっては、自然景観への影響が問題になる場合もある。例えば風光明媚な観光地などでは、風力発電機の設置によって景観が変わるために反対された。一方、大型風車が林立する雄大な光景を新たな観光資源とする動きもある。

米国と英国でのウインドファーム建設直後と1年後の周辺住民への意識調査ではいずれも、2回目が景観と騒音での反対が少なくなっている[71]

出力変動

風力発電の出力は昼夜問わず不随意に変動するため、需要への追従は基本的に他の調整力に富んだ電源(火力発電、貯水式水力発電など)に頼ることになる。また風力発電所の側でも、ある程度の出力の平滑化や負荷追従を行う場合があるほか、近年は発電量の予測技術も用いられている。一般的には、発電量の10%程度までは大きな問題にならないが、20%を超えると追加コストが目立って増えると言われている[76]。スペインと周辺国間では電力取引所での取引を用いた輸出入によって変動の一部を調整する例[77][78] が見られる。

短時間の変動

風力発電は風速の変動に従って出力が需要と無関係に変動し、電圧や力率の変動をもたらす。この変動は一般に太陽光発電に比べても大きい。特に導入量が小規模の場合は高い周波数成分を含む変動が多くなる。しかし大規模に導入した場合、変動は大幅に緩和され、系統側の負担が小さくなる(#導入規模の影響参照)。実際、デンマーク、ドイツ北部、スペインなどにおいて、信頼性を犠牲にせずに電力供給量の20-40%を風力で賄えることが実証されている[79][80][81]。また既存の系統に風力発電を追加する場合、新たなバックアップ電源を付加する必要は無いとされる[70]。ただし系統容量に占める風力発電の割合が大きい場合は、ある程度の蓄電設備を加えることで系統全体で見た発電コストを低減できる場合もあるとされ、検討や実験が進められている[82]。こうした対策にはコストもかかるが、ある程度の導入割合までは実用的な範囲とされる(#コスト参照)。

個々の風車やWF単位で出力を平滑化するには、下記の対策が有効とされる。

  • 大型のブレード自体の慣性力を利用する。風の強い時に回転数を動的に上げて運動エネルギーを蓄え、風が弱くなった時に利用することで、発電機の出力を平滑化する。
  • 一部の風車を調整力としてリザーブし、適宜解列などを行うことでWF全体の出力を平滑化する。
  • 電力を一時的に蓄電池に貯蔵する。
  • 系統連系部(インバータなど)に力率の調整能力を付与する。
  • フライホイールによる慣性回転や油圧・ガス圧・空気圧(圧縮空気)による蓄圧によってエネルギーを貯蔵する。例えば圧縮空気を用いた研究例では、15%のコストの追加で稼働率を34%から93%に引き上げられるという報告がある[83]
  • 局地的な気象解析を行い、リアルタイムで発電量を予測する(#発電量予測参照)。

この他、風力発電で得られた電力から水素を製造する手法も研究されている[84]

長時間の出力変動

風力発電の導入価値は、風の強い時間帯(季節)と電力需要の多い時間帯(季節)が重なる場合に相対的に大きくなる。一般には、夜間や冬期の暖房需要の多い場合には他の電源に比較して特に導入価値が高くなる。マッチしない場合(他電源による夜間電力が既に余っている場合など)にはその分価値が低くなる。また需要に対して発電量が不足する場合は、他の電源に頼ることになる。

強風

ファイル:Nishi-hen-na02.jpg
宮古島西平安名岬の風車は2007年に復旧

風力発電機の最大の敵は強すぎる風である。風力発電機には定格風速があり、定格を大幅に超える速度で運転すると原動機の焼損やブレードの破損などを招く場合がある。そのため風速が過大な場合は、保護のために速度を抑制するか、場合によっては一時的に発電を停止する。支柱ごと倒して強風をやり過ごすものもあるが少数である。

  • ヨーロッパなど高緯度で使用されている風力発電は、その地域的な特徴(高緯度、内陸)から、台風サイクロンなどの熱帯低気圧による暴風雨の影響を受けない場合が多い。
  • インドなど中緯度以下の地域では、暴風雨にさらされることがある。たとえば、2003年9月11日の台風では、宮古島にあった7基の風力発電機を壊滅させた。これは最大瞬間風速が近辺の観測値で74.1m/sに達し、国際規格(IEC61400-1)の最高クラスの規定値(70 m/s)をも超えたためである[85]
  • 欧州など風力発電機の普及が比較的進んでいる地域に比較すると、日本では台風は風の乱れ、落雷などの自然条件において、IECなどの国際規格を上回る耐性が求められる場合がある[85]。これに対応したガイドラインの策定がNEDOによって進められている[86]

強風や変動に対しては、下記のような対策が用いられる。

  • ブレードの角度(ピッチ)を変えて速度を抑制(フェザーリング)
  • ブレードまたは風力原動機全体を風に対して傾ける
  • 風車と発電機を一時的に切り離す
  • 設備全体(ポールなど)を物理的に強化
  • 騒音対策を施した上で、ダウンウインド型を採用する[87]。もしくは、強風時のみ風下にブレードを向ける[88]
  • 強風に耐えうる型式の風力原動機を採用
  • 設置地域の風況の事前調査の強化

用地確保

陸上設置の場合は、風力発電機は1MWp(1000kwp)あたり50エーカー(約20ヘクタール)ほどの面積を必要とする。ただし風車そのものが占有する面積は主に支柱であるため5%以下であり、畑や牧草地など、高さを必要としない利用が行われる場所に設置すれば土地の確保の問題は小さくなる[76]。風量発電が一般的になり、風車公害の可能性もテレビ番組などで紹介され認知されるようになったので、近隣に人家がある場合は設置への反対運動が起きることがある。周辺地域と比較して高所に設置する場合には、立地点の整備や資材運搬、運用時のメンテナンスのために林道を造成する必要があり、それに伴う樹木の伐採が問題視される場合がある。

もっとも、近年は陸上に設置しない洋上風力発電も検討されつつあり、その場合は陸上設置にともなう諸問題は解消する。しかし、浮体風力は同一発電量の浮体原発の60倍もの浮体を必要としコストが高い

事前調査と発電量予測

風力発電の事業化にあたっては、事前の風況の調査が重要である。風は不随意に変動するが、その変動量や変動速度、平均強度などは確率的に取り扱うことが可能である。風力発電の発電量もまた、確率・統計的に取り扱うことができる。このため事前にある程度の量のデータを集めておくことにより、相応の確度で風況や発電量の予測を行うことができる。

近年では計算機を用いた局地気象解析技術により、短時間の変動についてもある程度の発電量の予測が可能になっている[89][90]。既に商用サービスも開始されている[91][92][93]。近年は一定規模以上の発電事業者に対し、発電量の予測を義務づける国もある(固定価格買い取り制度#併用される制度参照)。

逆に風況調査に不備のある場合、当初見込みよりも発電量が少なく、赤字となる場合がある。発電量が予測を下回ったなどの事情で稼働継続に値しない状況になった場合やより高性能な機種に置き換える場合などは、地中に打ち込んだ[94] 部分の移動は難しいが、上部の風力原動機は基本的に移設や転売が可能である。近年は欧州などで風力発電機の中古市場も拡大している[95]

事故

風力発電機も他の発電方式同様、事故と無縁ではない。構造物の破損や運用・保守作業中のミスなどにより、下記のような事故の例が見られる。

  • ブレードが折損し、回転の勢いで飛散する[96]。周囲の建造物等に被害を与えることもある[97]
  • 風力原動機の火災[98]
  • タワーの破損・倒壊[99]

こうした事故の背景として、機械的強度を十分にテストしないままに発電塔を巨大化したのが原因ではないかという指摘もなされている[96]

  • 米国での調査によると1972から2008年10月までの人の死傷を伴う風力発電機の事故発生数は75件であった[100]
  • 日本ではメンテナンス中の作業ミスにより風車が過回転状態になり、倒壊した事例などが報告されている[101]

リサイクル

風力発電機のリサイクル技術は数が多くないこともあり開発途上である[102]。鉄などの金属類はリサイクルされる[103] が、ブレードで一般的に用いられる繊維強化プラスチックについてはリサイクル技術が普及しておらず、焼却などで処分される。使用済みのブレードからガラス繊維をリサイクルする技術は開発されている[104]

脚注

注釈

  1. 騒音には周波数が数十Hz以下の低周波騒音も含まれる。これはふつう人の耳には聞こえないが、障子や窓を振動させることで、感覚的に二次的に認識される。俗に「風車病」とも呼ばれる頭痛やめまいなどの自律神経失調症に似た不定愁訴や、不眠などを引き起こす被害が報告されており、各地で被害が問題になっている。これら低周波騒音にも計画段階から充分に注意する必要があるとされる。低周波騒音は、工場ボイラー、道路を走行する大型自動車などからも発生する。低周波に関しては安全基準値は策定されていない。

出典

  1. 1.0 1.1 1.2 牛山泉「トコトンやさしい風力発電の本」日刊工業新聞社2010年2月ISBN 978-4-526-06380-0
  2. 引用:Wind power
  3. データ:GWEC
  4. データ:GWEC
  5. 5.0 5.1 Global Wind Energy Outlook 2010, GWEC
  6. 6.0 6.1 6.2 GWEC
  7. [1]
  8. 8.0 8.1 GWECの統計(2013年分)
  9. 風車の使用法〔過去〜現在〕
  10. 我が国における風力発電の歴史(1869 年~2008 年)
  11. 地域資産としての新エネルギー
  12. 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 12.11 12.12 エイモリー・B・ロビンス、スモール・イズ・プロフィタブル、省エネルギーセンター2005年ISBN 4-87973-294-X
  13. 2011年三陸沖地震時に東伊豆風力発電所で3台すべてが停止
  14. http://www.hiatec.co.jp/new_ene/winpro/map.html
  15. http://www.nagaoka-ct.ac.jp/me/events/presen/H16-35.pdf
  16. Navid Goudarzi (June 2013). “A Review on the Development of the Wind Turbine Generators across the World”. International Journal of Dynamics and Control (Springer) 1 (2): 192–202. http://link.springer.com/article/10.1007/s40435-013-0016-y. 
  17. Navid Goudarzi, Weidong Zhu (November 2012). “A Review of the Development of Wind Turbine Generators Across the World”. ASME 2012 International Mechanical Engineering Congress and Exposition (ASME) 4 - Paper No: IMECE2012-88615: pp. 1257–1265. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleid=1750788. 
  18. ZF Friedrichshafen AG”. Hansentransmissions.com. . 2013閲覧.
  19. "Wind Turbine Design Cost and Scaling Model", Technical Report NREL/TP-500-40566, December, 2006, page 35, 36 (PDF)”. . 2013閲覧.
  20. 5-MW BARD Near-shore Wind Turbine Erected in Germany, Renewable Energy World Online, 2008/11/18
  21. ベッツの法則 (PDF)
  22. 三菱重工の風力発電事業、瀬戸際から一気に形勢逆転へ、NBOnline、2007年7月31日
  23. 日本メーカーの小型風力原動機
  24. NEDOによるまとめ (PDF)
  25. Horns Revウインドファーム Horns Rev Wind Farm デンマーク
  26. 最大271基を4回(4年間)に分けて建設する1GWのWFの例
  27. Wind turbines in short supply, CNET News, April 4, 2008 9:38 AM PDT
  28. 風力発電の原点 苫前からの報告 故障、バードアタックなど課題山積、産経ニュース、2009年8月29日
  29. 可倒式風力を設置せよ 可倒式風力を設置せよ - 沖縄電力”. . 2018年4月10日閲覧.
  30. 沖縄電、トンガに可倒式風車を納入 西澤とODA参画”. . 2018年4月10日閲覧.
  31. 31.0 31.1 Wind in Our Sails, EWEA, 2011, Figure 1.1
  32. 例1
  33. 例2 (PDF)
  34. 港湾空間における風力発電、国土交通省港湾局
  35. 海の上でも風力発電、環境破壊や騒音少なく、読売新聞2010年3月26日
  36. Hywind – the world’s first full-scale floating wind turbine
  37. 九州大学 21世紀COEプログラム
  38. Wind Energy Harvesting From Airborne Platforms”. NASA. . 2012閲覧.
  39. Airborne Wind Turbines”. Joby Energy, Inc. . 2012閲覧.
  40. Airborne Wind Energy”. Makani Power, Inc.. . 2012閲覧.
  41. www.airborne-wind-turbine.com”. . 2012閲覧.
  42. Magenn”. Magenn Power Inc.. . 2012閲覧.
  43. ふわふわ浮きながら、しっかり発電。空飛ぶ風力発電機”. . 2012閲覧.
  44. EWEA、2007年
  45. [2] (PDF)
  46. Wind power installed capacity in Spain increased by1,516 MW in 2010, the lowest rhythm in seven years、スペイン風力発電協会
  47. 47.0 47.1 Wind energy was the technology that generated more electricity in Spain in March and covered 21% of demand、スペイン風力発電協会
  48. 長谷川公一『脱原子力社会へ-電力をグリーン化する-』岩波書店 岩波新書<新赤版>1328ISBN 978-4-00-431328-1 p157
  49. 小林豪 (2014年12月21日). “風力発電、部品の落下事故相次ぐ 定期検査義務づけへ”. 朝日新聞. http://www.asahi.com/articles/ASGDM5HZ7GDMULFA02C.html . 2014閲覧. 
  50. Danish Wind Industry Association
  51. デンマーク Wind Energy Departmentの資料
  52. 52.0 52.1 52.2 Annual Report on U.S. Wind Power Installation, Cost and Performance Trends: 2007, 米国エネルギー省(DOE)
  53. Wind Power Myths vs Facts, AWEA
  54. [3]
  55. [4]
  56. EU seeks to expand energy grids, BBC News, 13 November 2008
  57. 風が吹けば発電可能な状態の比率。稼働率とは異なる
  58. Y.Wan,M.Milligan, B.Parsons, Output Power Correlation Between Adjacent Wind Power Plants, J. Sol. Energy Eng. 125 (2003) 551
  59. NRELの資料
  60. NREL Report TP-463-4953,P48
  61. NEDOによるまとめ
  62. 文献例
  63. 63.0 63.1 63.2 再生可能エネルギー源の性能産業技術総合研究所
  64. 3MW機のLCA計算結果例 (PDF) 、30頁
  65. [5] (PDF)
  66. デンマーク風力省の資料
  67. NEDO資料
  68. 国税庁による解説
  69. 69.0 69.1 (財)エネルギー総合工学研究所、風力発電、2004年3月 P17
  70. 70.0 70.1 70.2 NRELによるまとめ (PDF)
  71. 71.0 71.1 71.2 関和市・牛山泉共著『更なる風を求めて垂直軸風車基礎から設計応用まで』パワー社2008年1月25日発行ISBN 978-4-8277-2401-1
  72. [6]
  73. 武田恵世:風力発電機の鳥類の繁殖期の生息密度への影響 日本鳥学会誌 Vol.62 (2013) No.2 p.135-142
  74. 国立・国定公園内における風力発電施設設置のあり方に関する検討会(第2回)議事要旨
  75. 鳥羽市行者山に建設予定の大型風車(風力発電)について
  76. 76.0 76.1 The Most Frequently Asked Questions About Wind Energy, AWEA
  77. スペインにおける風力発電と電力系統制御 日本風力発電協会
  78. OMEL(スペイン)
  79. AFP BB News, 2008年03月26日
  80. RenewableEnergyWorld.com Online, 2008年3月25日
  81. Wind Power Myths vs. Facts,AWEA.
  82. (PDF)
  83. ロビンス、スモール・イズ・プロフィタブル、P.238-239など
  84. [7] (PDF)
  85. 85.0 85.1 牛山泉、風力エネルギーの基礎、オーム社、平成17年ISBN 4-274-20098-1
  86. 日本型風力発電ガイドライン策定事業の最終報告書”. 独立行政法人新エネルギー・産業技術総合開発機構(NEDO). . 2012閲覧.
  87. 榎本他、局地気象解析を用いた風力発電量の予測
  88. 日経BP、1999年10月27日の記事(CRC総研が風力発電の発電量予測技術を開発、商用化へ)
  89. 清水建設「風判断」
  90. 日本気象協会と関西電力の共同開発による風力発電調査支援ツール(LAWEPS)
  91. 鹿島建設の技術・サービス紹介ページ
  92. 基礎
  93. NBonline、2008年7月4日 9時5分の記事(欧州で中古市場が急拡大)
  94. 96.0 96.1 2007年7月、シュピーゲル紙(2006年11月、オルデンブルクで運転中の発電塔の羽根が突然壊れ、一部分(長さ約10m)が200m先まで飛んでいった等)
  95. “騒音に各地で苦情相次ぐ 風力発電に想定外「逆風」”. J-CASTニュース. (2009年12月26日). http://www.j-cast.com/2009/12/26056447.html . 2009閲覧. 
  96. 2007年7月、シュピーゲル紙(2007年1月オスナブリュック及びハーフェラントの風力発電塔で火災発生)
  97. 2007年7月、シュピーゲル紙(2007年1月シュレースヴィッヒ・ホルシュタイン州で、アウトバーンのすぐ脇の発電塔が高さ100mの部分で折損・倒壊)
  98. Wind turbine blade crashes down in corn field, Chigaco Tribune, October24, 2008
  99. 株式会社ユーラスエナジー岩屋岩屋ウィンドファーム 発電所11A号機倒壊に係る事故報告の受理について(経済産業省)
  100. Recycling Wind Turbines, ScienceDaily, 23 Sep 2007
  101. Life Cycle Assessment of a Wind Turbine
  102. ReFiber ApS

参考文献

関連項目

外部リンク

業界団体
世界
Global Wind Energy Council(GWEC) 公式
World Wind Energy Association WWEA
欧州
European Wind Energy Association](EWEA) 公式
米国
American Wind Energy Association](AWEA) 公式
団体
製造企業
大型風車
小型風車