「離散空間」の版間の差分

提供: miniwiki
移動先:案内検索
(1版 をインポートしました)
(内容を「'''離散空間'''(りさんくうかん、{{lang-en-short|''discrete space''}}) 空間 <i>S</i>の各点 <i>p</i>の基本近傍を,<i>p</i>のみから成るも...」で置換)
(タグ: Replaced)
 
1行目: 1行目:
{{Refimprove|date=March 2011}}
+
'''離散空間'''(りさんくうかん、{{lang-en-short|''discrete space''}}
[[数学]]の[[位相空間論]]周辺分野における'''離散空間'''(りさんくうかん、{{lang-en-short|''discrete space''}})は、その点がすべてある意味で互いに「[[孤立点|孤立]]」しているような空間で、[[位相空間]](またはそれと同様の構造)の非常に単純で極端な例の一つを与える。
 
  
== 定義 ==
+
空間 <i>S</i>の各点 <i>p</i>の基本近傍を,<i>p</i>のみから成るものとすれば,集合 <i>A</i>の閉包は <i>A</i>と一致し,位相が最も強い位相空間が得られる。つまり,各点がばらばらで,他の点からの極限になりえないような空間である。このような空間を離散空間という。
''X'' を集合とする。
 
* ''X'' 上の'''離散位相''' {{lang|en|(''discrete topology'')}} とは、''X'' の任意の部分集合を ''X'' の[[開集合]]とすることによって定まる位相をいう(このとき全ての部分集合は[[閉集合]]にもなる)。''X'' が'''離散位相空間'''であるとは、それが離散位相を備えた位相空間であることをいう。
 
* ''X'' 上の'''離散[[一様空間|一様系]]''' とは、''X'' の[[対角集合]] &Delta; = {(''x'', ''x'') : ''x'' &isin; ''X''} &sub; ''X'' × ''X'' の任意の部分集合を[[近縁 (位相空間論)|近縁]]と定めることによって与えられる一様系をいう。''X'' が'''離散一様空間'''であるとは、それが離散一様系を備えた一様空間であることをいう。
 
* ''X'' 上の'''離散[[距離函数|距離]]''' &rho; は<div style="margin: 1ex 2em;"><math>
 
\rho(x,y) = \begin{cases}
 
  1 &\mbox{if}\ x\neq y , \\
 
  0 &\mbox{if}\ x = y
 
\end{cases}\quad(x,y \in X)
 
</math></div>で与えられる。このとき、距離空間 (''X'', &rho;) は'''離散距離空間'''あるいは'''[[孤立点|孤立点集合]]'''と呼ばれる。
 
* 距離空間 (''X'', ''d'') の[[部分集合]] ''S'' が ''X'' において'''離散'''であるとは、''S'' の各点 ''x'' に対し、適当な &delta; &gt; 0 が(''x'' ごとに)存在して、''x'' 以外の ''S'' の各点 ''y'' に対して ''d''(''x'', ''y'') &gt; &delta; とできるときにいう。このような集合は[[孤立点]]から成る。また、部分集合 ''S'' が距離空間 ''X'' において'''一様離散'''であるとは、適当な定数 &epsilon; &gt; 0 が存在して、''S'' の任意の相異なる二点に対して ''d''(''x'', ''y'') &gt; &epsilon; とできるときにいう。
 
 
 
距離空間 (''E'', ''d'') が'''一様離散空間'''であるとは、適当な定数 ''r'' &gt; 0 が存在して、''E'' の任意の二点 ''x'', ''y'' について、''x'' = ''y'' か ''d''(''x'', ''y'') &gt; ''r'' のいずれかが成立することをいう。このとき、台となる距離空間の位相は、距離空間が一様離散であるにもかかわらず、離散位相になる。例えば、実数全体の成す集合の通常の距離に関して、集合 {1, 1/2, 1/4, 1/8, …} がそのような空間の例を与える。
 
 
 
== 性質 ==
 
離散距離空間上の一様系は離散一様系であり、離散一様空間上の位相は離散位相である。故に、先に離散空間として挙げたいくつかの概念は、互いに両立する。他方、一様空間あるいは距離空間として離散でないものの中に、その位相が離散位相となるものが存在する。例えば、実数直線における通常の距離からくる距離空間 ''X''&nbsp;:= {1/''n''&nbsp;: ''n''&nbsp;= 1, 2, 3, …} を考えると、これが離散距離空間でないこと、また([[完備 (位相空間論)|完備]]でないから)一様空間としても離散でないことは明らかである。にもかかわらず、これは離散位相を備えた離散位相空間になる。すなわち、この ''X'' は「位相的に離散」だが、「一様離散」でも「距離的に離散」でもないということになる。
 
 
 
さらに以下のようなことが成り立つ。
 
* 離散空間の[[位相次元]]は 0 である。
 
* 位相空間が離散であるための必要十分条件は、その[[一元集合]]が必ず開になることであり、あるいはそれが[[集積点]]を一切含まないことである。
 
* 単元集合の全体は、離散位相に対する[[開基 (位相空間論)|開基]]を成す。
 
* 一様空間 ''X'' が離散であるための必要十分条件は、その対角集合 &Delta; が[[近縁系]]をなすことである。
 
* 任意の離散位相空間は各種の[[分離公理]]を全て満たす。特に、任意の離散空間は[[ハウスドルフ空間]]、つまり分離空間である。
 
* 離散空間が[[コンパクト空間|コンパクト]]であることと、それが[[有限集合]]であることとは同値である。
 
* 任意の離散一様空間あるいは離散距離空間は必ず[[完備空間]]である。
 
* 上二つの事実をあわせれば、任意の離散一様または距離空間が[[全有界]]であるための必要十分条件は、それが有限集合であることである。
 
* 任意の離散距離空間は[[有界空間]]である。
 
* 任意の離散空間は[[第一可算空間]]であり、さらに[[第二可算空間]]であることと[[可算集合|可算]]であることとが同値になる。
 
* 少なくとも二点を含む任意の離散空間は[[完全不連結]]である。
 
* 任意の空でない離散空間は、[[ベールの第二類]]である。
 
* 濃度が同じ二つの離散空間は互いに[[同相]]である。
 
* 任意の離散空間は離散距離によって距離化可能である。
 
* 有限空間が距離化可能なのは、それが離散空間であるときに限る。
 
* ''X'' が位相空間で ''Y'' が離散位相を備えた集合ならば、''X'' は ''X'' &times; ''Y'' 二よって十分に被覆される(射影が所期の被覆になる)。
 
 
 
離散位相空間から他の位相空間への任意の写像は[[連続写像|連続]]であり、離散一様空間から他の一様空間への任意の写像は[[一様連続]]になる。つまり、離散空間 ''X'' は位相空間と連続写像の[[圏 (数学)|圏]]および一様空間と一様連続写像の圏における ''X'' 上の[[自由対象]]である。これらのことは、離散構造が集合上自由であるというより広い現象の例になっている。
 
 
 
距離空間の場合は、距離空間の圏においては射の取りようによって複数の圏を考えうるから、事態はより複雑になる。射として一様連続写像の全体や連続写像の全体を取れば、確かに離散位相空間は自由だが、これでは一様構造や位相構造について考えただけで、距離構造については何も言っていないに等しい。距離構造についてより関連のある圏は、射を[[リプシッツ連続]]写像や[[弱縮小写像]]に限ればよいが、これらの圏は(二元以上を持つ集合上で)自由対象を持たない。それでも、離散距離空間は[[有界距離空間]]とリプシッツ連続写像の圏における自由対象であり、1 で押さえられる有界距離空間と弱縮小写像の圏における自由対象となる。すなわち、離散距離空間からベルの有界距離空間への任意の写像はリプシッツ連続になり、離散距離空間から別の 1 で押さえられる有界距離空間への任意の写像は弱縮小になる。
 
 
 
別な方向で考えると、位相空間 ''Y'' から離散空間 ''X'' への写像 ''f'' が連続になるための必要十分条件は、それが[[局所定数函数]]になる(つまり、''Y'' の各点の近傍でその上で ''f'' が定数となるようなものが存在する)になることである。
 
 
 
== 応用例 ==
 
離散構造は、集合上にほかに自然な位相や一様系、距離が入らないときの「何もしない構造」としてもよく用いられる。また、離散構造は特定の仮定における「極端な」例としても用いられる。例えば、任意の[[群 (数学)|群]]は離散位相を与えることにより[[位相群]]と考えることができ、それにより位相群に対する結果を任意の群に対して適用することができる。実際、代数学で研究されてきた通常の非位相群について、解析学的に[[離散群]]として言及することがある。これはいくつかの場合において実際に有効に応用されており、例えば、[[ポントリャーギン双対]]などが得られている。0-次元[[位相多様体]](あるいは[[可微分多様体]]や[[解析的多様体]])は離散位相空間に他ならないから、任意の離散群を 0-次元[[リー群]]と見ることもできる。
 
 
 
[[自然数]]全体の成す離散空間の可算無限個のコピーの[[直積位相空間|直積]]は、[[無理数]]全体の成す空間に[[同相]]であり、同相写像は[[連分数展開]]によって与えられる。二点から成る離散空間 &#x7b;0, 1&#x7d; の可算無限個のコピーの直積は[[カントール集合]]に同相であり、この直積に[[直積一様系]]を考えれば、実は[[一様同相]]になる。この同相写像は[[三進展開]]から得られる([[カントール空間]]を参照)。
 
 
 
[[数学基礎論]]において、&#x7b;0, 1&#x7d; の積の[[コンパクト空間|コンパクト性]]の研究は、([[選択公理]]よりも弱い)[[ブールの素イデアル定理|超フィルター原理]]への位相的取り組みにおいて中心的である。
 
 
 
== 密着位相 ==
 
{{main|密着空間}}
 
離散空間の対極にあるのが[[密着空間]]である(密着空間の位相は自明位相とも呼ばれる)。これは開集合の数が可能な限り最小(つまり[[空集合]]と全体集合のみ)となるような空間である。離散位相が始対象・自由対象であるのに対して、密着位相は終対象・[[余自由対象]]になる。つまり、位相空間「から」密着空間「への」任意の写像は連続になる、などの性質がなりたつ。
 
 
 
== 関連項目 ==
 
* [[円筒集合]]
 
 
 
== 参考文献 ==
 
<references />
 
  
 +
{{テンプレート:20180815sk}}
 
{{DEFAULTSORT:りさんくうかん}}
 
{{DEFAULTSORT:りさんくうかん}}
 
[[Category:位相空間論]]
 
[[Category:位相空間論]]
 
[[Category:位相的構造]]
 
[[Category:位相的構造]]
 
[[Category:数学に関する記事]]
 
[[Category:数学に関する記事]]

2019/5/1/ (水) 23:32時点における最新版

離散空間(りさんくうかん、: discrete space

空間 Sの各点 pの基本近傍を,pのみから成るものとすれば,集合 Aの閉包は Aと一致し,位相が最も強い位相空間が得られる。つまり,各点がばらばらで,他の点からの極限になりえないような空間である。このような空間を離散空間という。



楽天市場検索: