三つ子素数

提供: miniwiki
2018/8/19/ (日) 17:30時点におけるAdmin (トーク | 投稿記録)による版 (1版 をインポートしました)
移動先:案内検索

三つ子素数(みつごそすう、prime triplet)もしくは三つ組素数とは、3個の素数の組で、(p, p + 2, p + 6) または (p, p + 4, p + 6) のタイプのもののことである。

概要

三つ子素数は双子素数いとこ素数セクシー素数を含む。

なお、双子素数は「2つの素数の組 (p, p + 2)」と定義されるのに対し、3つの素数の組である三つ子素数を「(p, p + 2, p + 4)」と定義していない

この形は (3, 5, 7) に限られることと、p が5以上の素数の場合、「(p + 2, p + 4)」のいずれかが必ず3の倍数になるからだ。

三つ子素数を小さい順に並べると、次のようになる。

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), (37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), …

三つ組の中で最小の素数のみを並べると、

5, 7, 11, 13, 17, 37, 41, 67, 97, 101, 103, 107, 191, 193, 223, 227, 277, 307, 311, 347, 457, 461, 613, 641, 821, 823, 853, 857, 877, 881, 1087, …(オンライン整数列大辞典の数列 A7529

である。このうち、(p, p + 2, p + 6) のタイプのものは

5, 11, 17, 41, 101, 107, 191, 227, 311, 347, 461, 641, 821, 857, 881, … (テンプレート:OEIS2C)

であり、(p, p + 4, p + 6) のタイプのものは

7, 13, 37, 67, 97, 103, 193, 223, 277, 307, 457, 613, 823, 853, 877, 1087, … (テンプレート:OEIS2C)

である。

予想

三つ子素数は無数に存在すると予想されている。ハーディリトルウッドはより詳細な予想を立てており、それによると、x 未満の (p, p + 2, p + 6) の形の三つ子素数、(p, p + 4, p + 6) の形の三つ子素数のそれぞれの個数はおよそ

[math]\frac{9}{2} \prod_{p\ge 5} \frac{p^2(p-3)}{(p-1)^3} \int_2^x \frac{dt}{(\log t)^3} \approx 2.858248596 \int_2^x \frac{dt}{(\log t)^3}[/math]

であるらしい。108 未満の三つ子素数の個数は、それぞれ 55,600 と 55,556 であり、上記推定値は 55,490 である[1]

2022年5月現在で知られている最大の三つ子素数は

(2072644824759 × 233333 − 1, 2072644824759 × 233333 + 1, 2072644824759 × 233333 + 5)

である[2]

脚注

参考文献

  • Chris K. Caldwell 著、SOJIN 訳『素数大百科』共立出版、2004年 ISBN 978-4320017597

関連項目

外部リンク