ディリクレの関数

提供: miniwiki
2016/1/29/ (金) 15:34時点における106.186.208.45 (トーク)による版
(差分) ← 古い版 | 最新版 (差分) | 新しい版 → (差分)
移動先:案内検索

ディリクレの関数(ディリクレの-かんすう)とは、実数全体の成す集合 R 上で定義される次のような関数のことである。

[math] f(x)= \begin{cases} 1 & (x \in \mathbb{Q})\\ 0 & (x \in \mathbb{R}\smallsetminus \mathbb{Q}) \end{cases} [/math]

ただし、Q有理数全体の成す集合である。 式から分かるように、この関数はいたるところで不連続である。さらに、

[math]\sup \int^a_b f(x)dx=a-b[/math]
[math]\inf \int^a_b f(x)dx=0[/math]

が成り立つから、(sup∫ を上積分、inf∫ を下積分という)ディリクレの関数はリーマン積分不可能であることが分かる。(ルベーグ積分は可能で、その値は 0 である。これは、可算無限集合である Qルベーグ測度に関して零集合であることによる)

周期性

この関数は、任意の有理数aに対して [math]f(x+a)=f(x)[/math] となる。これは有理数全体の集合が加法について閉じていることによる。

また、この関数は無限個の周期を持ち、かつ定数関数とならない一例である。

連続関数の極限としての表示

ディリクレの関数は、ディリクレ本人によって、

[math]f(x)=\lim_{n\to \infin} \lim_{k\to \infin} \cos^{2k} (n!\, \pi x)[/math]

と表せることが示されている(したがってディリクレ関数は 2 階のベール関数の一例である)。その方法は次による。

任意の有理数 q を考える。n! q は、十分大きな n に対して恒等的に整数である。それに比べ、無理数 r は、いくら n を大きく取っても n! r が整数にならない。従って、ディリクレの関数は、次のように変形できる。

[math] f(x)= \begin{cases} 1 & (n!\,x \in \mathbb{Z})\\ 0 & (n!\,x \in \mathbb{R} \smallsetminus \mathbb{Z}) \end{cases} (n \to \infin) [/math]

ただし、Z は整数全体の成す集合。さてここで、関数

[math] F(x)= \begin{cases} 1 & (x \in \mathbb{Z})\\ 0 & (x \in \mathbb{R} \smallsetminus \mathbb{Z}) \end{cases} [/math]

を表示できれば、f(x) = lim[n→∞] F(n!x) となって決着がつく。(F は単独で考えても興味深い関数である。) F は、不連続でありながらも周期的である。一定の周期を持つ関数として三角関数を考える。cos2x) は、x が整数であれば 1 を返し、それ以外であれば [0, 1) 内の実数を返す。[0, 1) 内の実数は、無限回冪乗することによって 0 に収束させることが出来る。また、1 はいくら冪乗しても常に 1 となって変化しない。これより、

[math]F(x)=\lim_{k\to \infin} \cos^{2k} (\pi x)[/math]

が結論付けられる。従って、

[math]f(x)=\lim_{n\to \infin} F(n!x)=\lim_{n\to \infin} \lim_{k\to \infin} \cos^{2k} (n!\pi x)[/math]

となる訳である。

関連項目

テンプレート:病的な関数の一覧