「ディリクレの関数」の版間の差分

提供: miniwiki
移動先:案内検索
(1版 をインポートしました)
(内容を「'''ディリクレの関数'''(ディリクレの-かんすう) 有理数で 1, 無理数で 0 をとる, いたるところ不連続な関数. {{テンプレート:…」で置換)
(タグ: Replaced)
 
1行目: 1行目:
'''ディリクレの関数'''(ディリクレの-かんすう)とは、[[実数]]全体の成す集合 '''R''' 上で定義される次のような[[関数 (数学)|関数]]のことである。
+
'''ディリクレの関数'''(ディリクレの-かんすう)
  
: <math>
+
有理数で 1, 無理数で 0 をとる, いたるところ不連続な関数.
f(x)=
 
\begin{cases}
 
1 & (x \in \mathbb{Q})\\
 
0 & (x \in \mathbb{R}\smallsetminus \mathbb{Q})
 
\end{cases}
 
</math>
 
ただし、'''Q''' は[[有理数]]全体の成す集合である。
 
式から分かるように、この関数はいたるところで不連続である。さらに、
 
: <math>\sup \int^a_b f(x)dx=a-b</math>
 
: <math>\inf \int^a_b f(x)dx=0</math>
 
が成り立つから、(sup&int; を[[上積分]]、inf&int; を[[下積分]]という)ディリクレの関数はリーマン[[積分]]不可能であることが分かる。([[ルベーグ積分]]は可能で、その値は 0 である。これは、[[可算無限集合]]である '''Q''' は[[ルベーグ測度]]に関して零集合であることによる)
 
  
==周期性==
+
{{テンプレート:20180815sk}}
この関数は、任意の有理数aに対して <math>f(x+a)=f(x)</math> となる。これは有理数全体の集合が[[群 (数学)|加法について閉じている]]ことによる。
 
  
また、この関数は無限個の周期を持ち、かつ定数関数とならない一例である。
 
 
==連続関数の極限としての表示==
 
ディリクレの関数は、[[ペーター・グスタフ・ディリクレ|ディリクレ]]本人によって、
 
: <math>f(x)=\lim_{n\to \infin} \lim_{k\to \infin} \cos^{2k} (n!\, \pi x)</math>
 
と表せることが示されている(したがってディリクレ関数は 2 階の[[ベール関数]]の一例である)。その方法は次による。
 
 
任意の有理数 ''q'' を考える。[[階乗|''n''!]] ''q'' は、十分大きな ''n'' に対して恒等的に[[整数]]である。それに比べ、無理数 ''r'' は、いくら ''n'' を大きく取っても ''n''! ''r'' が整数にならない。従って、ディリクレの関数は、次のように変形できる。
 
: <math>
 
f(x)=
 
\begin{cases}
 
1 & (n!\,x \in \mathbb{Z})\\
 
0 & (n!\,x \in \mathbb{R} \smallsetminus \mathbb{Z})
 
\end{cases}
 
(n \to \infin)
 
</math>
 
ただし、'''Z''' は整数全体の成す集合。さてここで、関数
 
: <math>
 
F(x)=
 
\begin{cases}
 
1 & (x \in \mathbb{Z})\\
 
0 & (x \in \mathbb{R} \smallsetminus \mathbb{Z})
 
\end{cases}
 
</math>
 
を表示できれば、''f''(''x'') = lim[''n''&rarr;&infin;] F(''n''!''x'') となって決着がつく。(''F'' は単独で考えても興味深い関数である。) ''F'' は、[[不連続]]でありながらも[[周期的]]である。一定の[[周期]]を持つ関数として[[三角関数]]を考える。cos<sup>2</sup>(&pi;''x'') は、''x'' が整数であれば 1 を返し、それ以外であれば [0, 1) 内の実数を返す。[0, 1) 内の実数は、無限回[[冪乗]]することによって 0 に収束させることが出来る。また、1 はいくら冪乗しても常に 1 となって変化しない。これより、
 
: <math>F(x)=\lim_{k\to \infin} \cos^{2k} (\pi x)</math>
 
が結論付けられる。従って、
 
: <math>f(x)=\lim_{n\to \infin} F(n!x)=\lim_{n\to \infin} \lim_{k\to \infin} \cos^{2k} (n!\pi x)</math>
 
となる訳である。
 
 
== 関連項目 ==
 
*[[トマエ関数]]
 
 
{{病的な関数の一覧}}
 
 
{{DEFAULTSORT:ていりくれのかんすう}}
 
{{DEFAULTSORT:ていりくれのかんすう}}
 
[[Category:解析学]]
 
[[Category:解析学]]
 
[[Category:特殊関数]]
 
[[Category:特殊関数]]
 
[[Category:数学に関する記事]]
 
[[Category:数学に関する記事]]

2018/10/8/ (月) 18:51時点における最新版

ディリクレの関数(ディリクレの-かんすう)

有理数で 1, 無理数で 0 をとる, いたるところ不連続な関数.



楽天市場検索: