「インホイールモーター」の版間の差分

提供: miniwiki
移動先:案内検索
ja>HIBIKI-CUBE
(種類: バックラッシュにリンクを追加)
 
 
(同じ利用者による、間の2版が非表示)
1行目: 1行目:
 
[[File:Honda_FCX_rear_in-wheel_motor_Honda_Collection_Hall.jpg|thumb|[[ホンダ・FCXクラリティ#FCXコンセプト|FCXコンセプト]]後輪のインホイールモーター]]
 
[[File:Honda_FCX_rear_in-wheel_motor_Honda_Collection_Hall.jpg|thumb|[[ホンダ・FCXクラリティ#FCXコンセプト|FCXコンセプト]]後輪のインホイールモーター]]
[[ファイル:AntecMare.JPG|thumb|前輪にハブモーターを装備した[[電動自転車]]]]
+
'''インホイールモーター、ホイールモーター、ハブモーター'''(In-wheel motor、Wheel motor、Hub motor)
'''インホイールモーター、ホイールモーター、ハブモーター'''(In-wheel motor、Wheel motor、Hub motor)とは、[[電気自動車]]などに使われる、[[車輪]]の[[ハブ (機械)|ハブ]]内部に装備された[[電動機|電気モーター]]。次世代自動車のコンポーネント技術とされる。
 
  
必ずしもホイールの内部にモーター部分が入っていなくとも、ハブと一体化して同軸で繋がっていればインホイールモーターと呼ばれる場合がある。
+
電気自動車などで、駆動輪の近傍に配され、直接タイヤを駆動するモーター。また、その駆動方式。
  
== 概要 ==
+
ドライブシャフトを必要としないため、車体の軽量化を図れるほか、各車輪の駆動力を細かく制御することで空転を防ぐことができる。
古くは[[19世紀]]終わりの電気自動車にも搭載されていたが、その後[[内燃機関]]の発達で電気自動車ごと姿を消していた。[[20世紀]]後期になり、電気自動車の見直しと共に再び研究される様になった。
 
  
=== 利点 ===
 
*駆動力がホイールへほとんど直接伝達されるために、従来型のギアや駆動軸などによるエネルギー損失がなく、それらが省かれることで重量、容積、費用、故障、保守などの点で有利となる。
 
*各車輪を個別に制御する事で駆動力配分を自在に変更できるため、[[横滑り防止装置]]や[[トラクションコントロールシステム]]の発展が期待される。<!--(単発車でも個別に駆動力を配分する方式はあるが、駆動ロスやレスポンスの問題などを抱える)-->
 
*ドライブシャフトを介して車輪を駆動する自動車では、舵輪の切れ角に限界がある(40°程度)。インホイールモーターでは直進状態から真横にまで舵角を広げる事ができ、[[四輪駆動]]と[[四輪操舵]]を組み合わせる事で平行移動や[[超信地旋回]]が実現する[http://www.youtube.com/watch?v=h_DYzBe3jgI][http://www.youtube.com/watch?v=MfYdas0OiTI]。<!--<ref>[http://www.ssken.co.jp/tokkyo/docs/23.htm 車輪の懸架・操舵機構 株式会社四国総合研究所] PIVOTに採用された技術</ref>-->
 
*ダイレクトドライブの場合、伝達機構による[[バックラッシュ (機械) | バックラッシュ]]が無いため制御性と快適性が高い。減速機構を用いる場合でも、ドライブシャフトの共振周波数などによる制約を受けないため、モーター車上搭載型に比べて緻密な制御が可能になる。
 
*モータの種類によっては慣性モーメントを低減できるため、加速時の実質的なエネルギー効率が向上する。
 
**車両においては車体を加速させるエネルギーに加えて、モーターのローターや伝達機構などの回転体を加速させるためのエネルギーが必要になるため、慣性モーメントが小さいほうが加速に使うエネルギーは減少する。
 
*サスペンションと駆動機構(モーター)をモジュール化することで生産の容易性が高まる。
 
**ただし、内燃機関式のFF車やモーター車上搭載型の自動車でもサスペンションメンバーにエンジンまたはモーターを取り付けモジュール化した状態で車体に取り付ける生産方法が一般的にとられている。
 
*ばね下重量が増え、乗り心地が良くなる。
 
**従来の常識では、車輪のばね下の重量が増えると乗り心地と操縦性の低下を招く<ref>[http://mechanical-tech.jp/node/2964 NTN、軽量化を実現したEV向けインホイールモータを開発 | メカニカル・テック]</ref>、とされていた。しかし、ばね下質量が増えると共振周波数が下がることによって高速走行時には振動レベルが下がる。その結果、常識とは逆に道路の継ぎ目など細かい凹凸がある波状路でも乗り心地が向上する。また低速時でもショックアブソーバーの調整によって広い範囲で振動を吸収できることが判明している。<ref>[http://monoist.atmarkit.co.jp/mn/articles/1108/01/news025.html 「乗り心地が最悪」という常識を打ち破る | IT MONOist]</ref>
 
  
=== 欠点と課題 ===
 
*路面からの衝撃はタイヤを介しただけでモーター本体に伝達されるため、モーターや減速機には高い耐久性が求められる。
 
**車輪には時に10G以上の加速度が発生し、市販自動車はそれに近いまたはそれ以上の振動試験を繰り返し信頼性を確保している。それに対応するためには各部を補強したり、電機子巻線が振動による疲労で断線しないよう樹脂で固めるなどの対策が必要になり、必然的にバネ下重量は増大する(このため、上記したハンドリング性能は更に悪化する)。軸は高強度のベアリングで支えることになるが、通常の自動車よりもベアリング数が多く複雑になるため、その信頼性の確保はこれからである。低回転域のトルクを補償するためにモーターと同軸に減速ギア機構も搭載する方式では、ベアリング数はさらに増え、条件は更に不利になる。これらの欠点は鉄道車両の[[吊り掛け駆動方式]]と類似している。
 
*モータ搭載位置が低くなるため、[[浸水]]や路上の異物などへの対処が必要になる。
 
*モータ設計の制約が大きい。ホイール内の空間や許容できる重量によっておのずとモータの設計(各部寸法、電磁構成、巻線方式)は決定されてしまう。その制約の中で高出力、高効率を実現しなくてはならない。
 
*モーターがブレーキと隣接するため、熱対策が必要になる。
 
**稀なケースではあるものの、充電池が満充電の状態で長い下り坂を降坂するなどのケースでは回生ブレーキの効果が弱まるため、[[ディスクブレーキ]]を多用することになる。[[ブレーキローター]]はレーシングカーの場合で600℃以上にまで発熱し、乗用車であってもエンジンブレーキを併用せずに連続降坂を行えば300℃以上にまで発熱することがある。そのような高温になると輻射熱により周辺が熱にさらされる。インホイールモーターはディスクブレーキシステムの直近に設置されるため、電気配線の樹脂が度重なる熱ストレスで溶けたり割れたりして絶縁が破壊されたり、永久磁石電動機を使用する場合は熱減磁<!--エリーカのネオジム磁石は特に弱いよ-->によるモーター不調(半径方向、円周方向とも、均一に減磁してくれるという保証はどこにも無い。力行時の異常振動や、センサレス制御している場合は逆回転を始める可能性すらある)が発生しないよう、ホイール内構造を考慮する必要がある。しかし、物理的にモーターとブレーキを離せばホイール構造の大型化すなわちバネ下重量増に繋がり、遮熱板を入れても結局重量は増加する。
 
<!--
 
*4輪駆動の時に1つでも故障すればまともに走れなくなるので、エンジンが1つの従来車よりも故障に対して脆弱である。
 
**全く反対に従来型の自動車と違って1つが壊れても3つあればとりあえず走行できるので、修理出来る所まで自走すれば済む、という意見もある。例えばインホイールモーターで高速走行中に片輪の駆動が途絶えた場合、失効したモーターの側へハンドルを取られる。当然、その対策はあり、瞬時にもう片方のモーターの駆動も停止して惰性走行に移るような制御が考えられる。また、モーターのローターや減速ギアのベアリングが多数必要になり、その負荷も高いため、ベアリングの耐久性も必要である。まだ量産車で採用された実績が無いため、信頼性の検証はこれからである。<ref>掘洋一、寺谷達也、正木良三著 『自動車用モーター技術』 日刊工業新聞社 2003年6月30日初版1刷発行 ISBN 4-526-05144-6</ref>。
 
(実際は二輪駆動の方が一基の故障で影響は大きくなるはずですし、一基の故障で走行不能になる単発車に比べて脆弱というのも言い過ぎではないかと思います)-->
 
 
== 種類 ==
 
駆動には[[ダイレクトドライブ]]と呼ばれる、モータがホイールへ直結しているもの(モータ回転数=車輪の回転数)と、伝達効率は落ちるが、[[減速機]]を間に介して[[トルク]]を増幅するものとが存在する。必ずしもどちらかの方式が高効率ということではなく、全体のバランスを考慮して選択される。
 
 
;ダイレクトドライブ方式
 
:ダイレクトドライブの場合はモータ単体で高トルクが要求されるため、トルクが稼げるアウターロータータイプを採用することが多い。減速ギアを使わないダイレクトドライブの場合はギア損失がないので大きなアドバンテージがある。しかし、モータ単体で高トルクを要求される関係上、電流依存の損失が多く発生してしまう。高トルクを実現するためには大きな直径のモータが必要になり、体積、重量ともにギアリダクション方式に比べて不利になってしまう。バネ下重量の増加も懸念事項である。強力な希土類磁石を採用することである程度は小型軽量化は可能であるが、依然としてギアリダクション方式には及ばない。
 
;ギアリダクション方式
 
:[[遊星歯車]]や[[サイクロイド歯車]]などの減速ギアを介すことでモータのトルクを増幅するもの。小型軽量化を図るための方式である。モータの大きさは最大トルクにおおむね比例するので、ギアリダクション方式では低トルク・高速回転型のモータを採用することでモータのトルク要件を緩和する。減速ギアを使うことで伝達効率は低下するが、モータ単体に大きなトルクが要求されないので電流依存の損失が少なくなるという特徴がある。減速ギアの精度やオイル粘度によって実用的な効率は大きく変わる。また、レスポンスのいいモータの特性上、[[バックラッシュ (機械) | バックラッシュ]]が発生しがちなので、ギアの精度を向上させた上で制御により[[バックラッシュ (機械) | バックラッシュ]]を低減する必要がある。
 
 
モータは内側の固定子をコイル、外側の回転子をマグネットとするものを「アウターロータ」タイプ。逆に外側がコイル、内側がマグネットのものを「インナーロータ」タイプと区別することがある。ホイールの中に搭載されるという制約上、軸方向・径方向ともに小型化されたモータが要求される。軸方向の長さを短縮するために、巻線方式にはコイルエンドの小さい集中巻を採用する事例がある。径方向の大きさを小さくするために、空冷方式を採用してウォータージャケットを省略する設計も多い。
 
 
== 製造企業 ==
 
*[[東洋電機製造]] - [http://www.toyodenki.co.jp/html/rec_genba_iwv2.html アウターローター式インホイールモータ](三菱・ランサーエボリューションMIEVなど)
 
*[[明電舎]] - [http://www.meidensha.co.jp/pages/tech33-techno/techno-02/index.html 電気自動車用インホイール駆動システム](エリーカなど)
 
*[[NTN]] - [http://www.ntn.co.jp/japan/news/news_files/new_products/news201000034.html インテリジェント・インホイール]
 
*[[ミシュラン]] - [[:en:Active Wheel]]
 
*[[:en:PML Flightlink]] - [[:en:Hi-Pa Drive]]
 
*[[アイシン・エィ・ダブリュ]]
 
 
== 装備した自動車 ==
 
*[[:en:Lohner-Porsche Mixte Hybrid]] - 内燃機関が主流になる以前の[[1900年]]に[[フェルディナント・ポルシェ]]の設計で作られた[[ハイブリッドビークル]]。内燃機関で発電して前二輪に備えたモーターを駆動させる。
 
*[[:en:Lunar rover]] - [[1971年]]から[[アポロ計画]]に使用された[[月面車]]。前後四輪にモーターを備える。[http://www.history.nasa.gov/alsj/LRV_OpsNAS8-25145Pt1.pdf]
 
*[[アラコ]]・エブリデーコムス - [[2000年]]に日本で発売された[[マイクロカー]]。2004年以降は[[トヨタ車体]]・コムスとして販売されていたが、2012年のモデルチェンジでハブモーターを廃止した。
 
 
=== 試作車/実験車 ===
 
*[[新日本製鐵]]・[[NAV (自動車)|NAV]] (1990年)
 
*[[国立環境研究所]]・[[IZA]] (1991年)
 
*[[四国電力]]・PIVOT - 車体が前を向いたままでの横方向への走行(カニ走り)、[[超信地旋回]]が可能 (1993)
 
*国立環境研究所・[[ルシオール]] (1997)
 
*[[慶應義塾大学]]・[[KAZ (自動車)|KAZ]] - 遊星歯車で減速 (2001)
 
*[[東京大学]]・東大三月号-II[http://www.hori.t.u-tokyo.ac.jp/ev_j.html](2001)
 
*東京大学・カドウェルEV(2004)
 
*慶應義塾大学・[[エリーカ]] (2004)
 
*[[トヨタ・Fine-X]](2005)
 
*[[トヨタ・i-unit]] (2005)
 
*[[三菱・ランサーエボリューション#ランサーエボリューションMIEV|三菱・ランサーエボリューションMIEV]] (2005)
 
*[[日産・ピボ|日産・Pivo2]](2007)
 
*[[横浜国立大学]]・[[FPEV2-Kanon]] - アウターロータ方式(2008年頃)
 
*[[SIM-Drive]]・[[SIM-LEI]][http://car.watch.impress.co.jp/docs/news/20110518_446649.html](2011)
 
<!--保留
 
*トヨタ・Fine-N[http://www2.toyota.co.jp/jp/news/03/10/nt03_082.html] (2003)
 
走行未公開
 
*[[トヨタ・MTRC]] (2004)
 
走行未公開
 
*ホンダ・FCXコンセプト(2005)
 
走行未公開(2006年版はIWM未搭載の模様)。IWMは補助。
 
*三菱・iMiEV Sport(2007)
 
走行未公開。IWMは補助。
 
*トヨタ・スープラHV-R(2007)
 
* [[SIM-Drive]]・[[SIM-HAL]](2013)
 
IWMは補助(ほとんど飾り?)。
 
-->
 
 
== 出典 ==
 
 
{{Reflist}}
 
{{Reflist}}
 
+
{{テンプレート:20180815sk}}
=== 文献 ===
 
*800馬力のエコロジー ISBN 978-4-7897-0932-3
 
*近未来車EV戦略 ISBN 978-4-380-93255-7
 
*アメリカからのEV報告 ISBN 978-4-523-26292-3
 
*EV・電気自動車―色々な方向に走り出します ISBN 978-4-381-08783-6
 
*疾れ!電気自動車―電気自動車〈EV〉vs燃料電池車 ISBN 978-4-8067-1290-9
 
*電気自動車の時代 ISBN 978-4-643-91131-2
 
*新しいEV―高性能電気自動車 ISBN 978-4-274-03186-1
 
*電気自動車時代
 
*電気自動車 (夢・化学21) ISBN 978-4-621-04709-5
 
 
 
== 関連項目 ==
 
*[[ダイレクトドライブ]]
 
 
 
{{Commons|Category:In-wheel motors}}
 
{{Car-stub}}
 
 
{{DEFAULTSORT:いんほいるもた}}
 
{{DEFAULTSORT:いんほいるもた}}
 
[[Category:電動機]]
 
[[Category:電動機]]
 
[[Category:自動車工学]]
 
[[Category:自動車工学]]

2018/9/26/ (水) 01:45時点における最新版

FCXコンセプト後輪のインホイールモーター

インホイールモーター、ホイールモーター、ハブモーター(In-wheel motor、Wheel motor、Hub motor)

電気自動車などで、駆動輪の近傍に配され、直接タイヤを駆動するモーター。また、その駆動方式。

ドライブシャフトを必要としないため、車体の軽量化を図れるほか、各車輪の駆動力を細かく制御することで空転を防ぐことができる。




楽天市場検索: