Warning: Undefined variable $type in /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php on line 3

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /home/users/1/sub.jp-asate/web/wiki/includes/json/FormatJson.php on line 297

Warning: Trying to access array offset on value of type bool in /home/users/1/sub.jp-asate/web/wiki/includes/Setup.php on line 660

Warning: session_name(): Session name cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/Setup.php on line 834

Warning: ini_set(): Session ini settings cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 126

Warning: ini_set(): Session ini settings cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 127

Warning: session_cache_limiter(): Session cache limiter cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 133

Warning: session_set_save_handler(): Session save handler cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 140

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /home/users/1/sub.jp-asate/web/wiki/languages/LanguageConverter.php on line 773

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/Feed.php on line 294

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/Feed.php on line 300

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46
http:///mymemo.xyz/wiki/api.php?action=feedcontributions&user=2400%3A2653%3AE1A1%3AF100%3A9C2F%3A27AA%3AA560%3A786&feedformat=atom miniwiki - 利用者の投稿記録 [ja] 2024-05-09T22:33:22Z 利用者の投稿記録 MediaWiki 1.31.0 タンパク質 2018-05-14T14:23:19Z <p>2400:2653:E1A1:F100:9C2F:27AA:A560:786: </p> <hr /> <div>[[ファイル:Myoglobin.png|thumb|right|200px|[[ミオグロビン]]の3D構造。[[αヘリックス]]をカラー化している。このタンパク質は[[X線回折]]によって初めてその構造が解明された。]]<br /> &#039;&#039;&#039;タンパク質&#039;&#039;&#039;(タンパクしつ、&#039;&#039;&#039;蛋白質&#039;&#039;&#039;、{{Lang-en-short|protein}} {{IPA-en|ˈproʊtiːn|}}、{{Lang-de-short|Protein}} {{IPA-de|proteˈiːn|}})とは、20種類存在する&lt;small&gt;L&lt;/small&gt;-[[アミノ酸]]が[[鎖]]状に多数連結([[重合]])してできた[[高分子化合物]]であり、[[生物]]の重要な[[構成]]成分のひとつである&lt;ref name=&quot;SeikagakuDic810-6&quot;&gt;[[#生化学辞典(2版)|生化学辞典第2版、p.810 【タンパク質】]]&lt;/ref&gt;。<br /> <br /> 構成するアミノ酸の数や種類、また結合の順序によって種類が異なり、分子量約4000前後のものから、数千万から億単位になるウイルスタンパク質まで多種類が存在する&lt;ref name=&quot;SeikagakuDic810-6&quot; /&gt;。連結したアミノ酸の個数が少ない場合には[[ペプチド]]と言い、これが直線状に連なったものはポリペプチドと呼ばれる&lt;ref name=Take24&gt;[[#武村(2011)|武村(2011)、p.24-33、第一章 たんぱく質の性質、第二節 肉を食べることの意味]]&lt;/ref&gt;ことが多いが、名称の使い分けを決める明確なアミノ酸の個数が決まっているわけではないようである。<br /> <br /> タンパク質は、[[炭水化物]]、[[脂質]]とともに[[三大栄養素]]と呼ばれ、英語の各々の頭文字を取って「PFC」とも呼ばれる。タンパク質は身体をつくる役割も果たしている&lt;ref name=mite&gt;『見てわかる!栄養の図解事典』&lt;/ref&gt;。<br /> <br /> == 名称 ==<br /> {{Lang-de|Protein}}、{{Lang-en|protein}}、{{Lang-fr|protéine}} {{IPA-fr|prɔtein|}}、{{Lang-es|proteína}} は[[ギリシア語]]で「第一の」を意味する prōteîos から採られた。1838年に[[オランダ]]の化学者[[ヨハンネス・ムルデル]]が、[[スウェーデン]]の化学者[[イェンス・ベルセリウス]]から助言を受け、[[窒素]]を非常に多く含む生物の基本要素と考えてこの名称をつけた&lt;ref name=Take16&gt;[[#武村(2011)|武村(2011)、p.16-23、第一章 たんぱく質の性質、第一節 栄養素としてのたんぱく質]]&lt;/ref&gt;。<br /> <br /> 「蛋白質」の「蛋」とは[[卵]]のことを指し、[[卵白]](蛋白)がタンパク質を主成分とすることによる。これは Protein が[[ドイツ語]]でまた{{Lang|de|Eiweiß}}(卵白)とも訳され、これが[[日本語]]に直訳されたと考えられる&lt;ref name=Take16 /&gt;。<br /> <br /> 「蛋」という漢字は、例えば[[皮蛋]]のように中国ではよく使われる字であるが、日本ではあまり普及していない。そのため[[栄養学|栄養学者]]の[[川島四郎]]が「蛋白質」では分かりにくいとして「卵白質」という語を使用したが、一般的に利用されるにはいたらなかった。<br /> 現在では、栄養学分野では平仮名の「たんぱく質」、生物学では片仮名の「タンパク質」が使われる傾向にある&lt;ref name=Take3&gt;[[#武村(2011)|武村(2011)、p.3-6、はじめに]]&lt;/ref&gt;。<br /> <br /> == 構造 ==<br /> {{Main|タンパク質構造}}<br /> タンパク質は以下のような階層構造をもつ。<br /> * [[一次構造]] - アミノ酸配列<br /> * [[二次構造]] - αヘリックス、βシート、ランダム構造<br /> * [[三次構造]] - タンパク質全体の構造<br /> * [[四次構造]] - 多量体<br /> <br /> また、アミノ酸のみで構成された種類は単純タンパク質と言い、構成成分にアミノ酸以外のものが含まれる場合は複合タンパク質と呼ばれる&lt;ref name=&quot;SeikagakuDic810-6&quot; /&gt;。<br /> <br /> === アミノ酸 ===<br /> {{Main|アミノ酸}}<br /> 食物として摂取したタンパク質は[[消化]]の過程で[[アミノ酸]]にまで分解され吸収され、体内で再びタンパク質へ構成される。このタンパク質を作る基本物質であるアミノ酸は、[[炭素]][[元素]]を中心に水溶液中でプラスに[[荷電]]する[[アミノ基]]とマイナスに荷電する[[カルボキシル基]]を持ち、残り2箇所に[[水素]]と側鎖と呼ばれる分子構造を持つ&lt;ref name=Take24 /&gt;。タンパク質をつくるアミノ酸は20種類あるが、これらの差は側鎖の形状の違いで分けられる&lt;ref name=Take24 /&gt;。<br /> <br /> === 一次構造 ===<br /> {{Main|一次構造}}<br /> タンパク質はアミノ酸の[[ポリマー]]である。その基本的な構造は2つのアミノ酸のカルボキシル基 (−COOH) と別のアミノ酸のアミノ基(−NH&lt;sub&gt;2&lt;/sub&gt;)が水分子を1つ放出する[[脱水縮合]]([[ペプチド結合]])を起こして酸アミド結合(−CO−NH−)を形成することでできる鎖状である&lt;ref name=Take24 /&gt;。また、[[システイン]]残基がしばしば[[ジスルフィド結合]](S−S)の架橋構造をつくることもある。このポリマーの末端の結合していない部分は、アミノ基側をN末端、カルボキシル基側をC末端とよぶ&lt;ref name=&quot;SeikagakuDic812-5&quot;&gt;[[#生化学辞典(2版)|生化学辞典第2版、p.812 【タンパク質の一次構造】]]&lt;/ref&gt;。この時、一列のアミノ酸の脇には側鎖が並ぶ事になり、この配列の数や順序を指してタンパク質の&#039;&#039;&#039;[[一次構造]]&#039;&#039;&#039;とよぶ&lt;ref name=Take24 /&gt;。<br /> <br /> アミノ酸の配列は、[[遺伝子]]の本体である物質・[[デオキシリボ核酸|DNA]]の[[塩基配列]]により決定される&lt;ref name=&quot;SeikagakuDic812-5&quot; /&gt;(3個の[[ヌクレオチド]]により、1つのアミノ酸が指定される)。ペプチド結合してタンパク質の構成成分となった単位アミノ酸部分(−NH−CH(−R)−CO−)をアミノ酸残基と呼ぶ。それぞれの残基は、側鎖置換基 R の違いによって異なる性質をもつ。<br /> <br /> === 二次構造 ===<br /> {{Main|二次構造}}<br /> 鎖状のポリペプチドは、それだけではタンパク質の機能を持たない。一次構造で並んだ側鎖が相互作用で結びつき、ポリペプチドには決まった2種類の方法で結びついた箇所が生じる。1つは[[αヘリックス]](螺旋構造)と呼ばれ、あるアミノ酸残基の酸素と、4つ離れた残基の水素の結びつきを基礎に、同じ事が順次起こってポリペプチドにらせん構造をつくる&lt;ref name=Take34&gt;[[#武村(2011)|武村(2011)、p.34-48、第一章 たんぱく質の性質、第三節 「焼く」とどうなる?たんぱく質]]&lt;/ref&gt;。もう1つの[[βシート]]とは、ポリペプチドの一部が折り畳まれ、それぞれの水素と酸素残基が結合してつくる[[シート]]状の構造である&lt;ref name=Take34 /&gt;。これらは&#039;&#039;&#039;[[二次構造]]&#039;&#039;&#039;と呼ばれる&lt;ref name=&quot;SeikagakuDic816-1&quot;&gt;[[#生化学辞典(2版)|生化学辞典第2版、p.816 【タンパク質の二次構造】]]&lt;/ref&gt;。[[水素結合]]や[[ファンデルワールス力]]などによるこの畳み込みは[[フォールディング]](folding)とも呼ばれる&lt;ref name=Take85&gt;[[#武村(2011)|武村(2011)、p.85-96、第二章 たんぱく質の作られ方、第四節 ポリペプチドはいかにして「たんぱく質」となるか]]&lt;/ref&gt;。結合エネルギーが比較的低いため、簡単な処理によって構造を変性させやすい&lt;ref name=&quot;SeikagakuDic816-1&quot; /&gt;。<br /> <br /> === 三次構造 ===<br /> [[ファイル:Lysozyme.png|thumb|right|200px|[[リゾチーム]]のリボンモデル。αヘリックスが赤、βシートは黄色で表される。]]<br /> {{Main|三次構造}}<br /> タンパク質はαヘリックスやβシートといった二次構造の特定の組み合わせが局部的に集合し形成されたαヘアピンやβヘアピンなどの超二次構造と呼ばれる単位ができて核に纏まった[[タンパク質ドメイン|ドメイン]]をとり、タンパク質全体としての&#039;&#039;&#039;[[三次構造]]&#039;&#039;&#039;をとる&lt;ref name=&quot;SeikagakuDic814-2&quot;&gt;[[#生化学辞典(2版)|生化学辞典第2版、p.812 【タンパク質の三次構造】]]&lt;/ref&gt;。これは立体的に見てまとまった領域である。三次構造は側鎖間の相互作用によって安定する。特殊な塩基間の水素結合やシステイン残基間の[[ジスルフィド結合]]、[[静電引力]]などが安定化に寄与するが、特に[[疎水結合]]が大きく影響する。そのため[[有機溶媒]]や[[界面活性剤]]などで疎水結合を切ると三次構造が壊れ、タンパク質の変性が起こりやすい&lt;ref name=&quot;SeikagakuDic814-2&quot; /&gt;。三次構造の立体を図案化し描かれたものは「リボンモデル」と言う&lt;ref name=Take34 /&gt;。<br /> <br /> === 四次構造 ===<br /> [[ファイル:Haemoglobin-3D-ribbons.png|thumb|right|200px|[[ヘモグロビン]]のリボンモデル。2種2個ずつの[[グロビン]]サブユニットが計4つ集まり、四次構造を作っている。]]<br /> {{Main|四次構造}}<br /> タンパク質の中には複数(場合によっては複数種)の[[ポリペプチド鎖]]が非共有結合でまとまって複合体(会合体)を形成しているものがあり、このような関係を&#039;&#039;&#039;[[四次構造]]&#039;&#039;&#039;と呼ぶ&lt;ref name=&quot;SeikagakuDic816-3&quot;&gt;[[#生化学辞典(2版)|生化学辞典第2版、p.816 【タンパク質の四次構造】]]&lt;/ref&gt;。各ポリペプチド鎖はモノマーまたはサブユニットと呼ばれ、複合体は[[オリゴマー]]と言う&lt;ref name=&quot;SeikagakuDic816-3&quot; /&gt;。各サブユニットには疎水結合や水素結合または[[イオン結合]]が広い領域に多数存在し相補的に働くために方向性があるため、サブユニットは全体で特定の空間配置([[コンホメーション]])を取る&lt;ref name=&quot;SeikagakuDic816-3&quot; /&gt;。例えば、ヒトの[[赤血球]]に含まれ酸素を運ぶ[[ヘモグロビン]]は、α・β2種類の[[グロビン]]というサブユニットがそれぞれ2つずつ結びつく四次構造を持ったタンパク質の一種である&lt;ref name=Take34 /&gt;。<br /> <br /> === 一次構造と高次構造の関係 ===<br /> タンパク質の立体構造は、そのアミノ酸配列(一次構造)により決定されていると考えられている(Anfinsenのドグマ)。また、二次以上の高次構造は、いずれも一次構造で決定されるアミノ酸配列を反映している。例えば [[グルタミン酸|Glu]]、[[アラニン|Ala]]、[[ロイシン|Leu]] が連続するとαヘリックス構造をとりやすい。[[イソロイシン|Ile]]、[[バリン|Val]]、[[メチオニン|Met]]はβシート構造をとりやすい。また各構造の継ぎ目の鋭角なターンの部分には [[グリシン|Gly]]、[[プロリン|Pro]]、[[アスパラギン|Asn]] が置かれる、などの例がある。さらに、[[疎水性]]アミノ酸残基同士は引き合い([[疎水結合]])、[[システイン|Cys]] 同士は[[ジスルフィド結合]]を形成して高次構造を安定化させる。<br /> <br /> === プロテオーム ===<br /> 生体のタンパク質を構成するアミノ酸は20種類あるが&lt;ref name=&quot;SeikagakuDic810-6&quot; /&gt;、それが3つ連結した[[ペプチド]]だけでも約20&lt;sup&gt;3&lt;/sup&gt;=8,000通りの組み合わせがあり得る。タンパク質については、その種類は数千万種と言われる。生物の遺伝子([[ゲノム]])から作られるタンパク質ひとそろいのセットは、&#039;&#039;&#039;[[プロテオーム]]&#039;&#039;&#039;と呼ばれるが、[[ヒトゲノム]]の塩基配列解読が終わった今、プロテオームの解析([[プロテオミクス]])が盛んに進められている。<br /> <br /> === タンパク質の構造と機能 ===<br /> タンパク質の機能は上記の三次構造・四次構造(立体構造)によって決定される。これは、同じアミノ酸の配列からなるタンパク質でも、立体構造(畳まれ方)によって機能が変わるということである。たとえば[[牛海綿状脳症|BSE]]の原因となる[[プリオン]]は、正常なプリオンとは立体構造が違うだけである。なお、多くのタンパク質では、[[熱]]や[[圧力]]を加えたり、溶液の [[水素イオン指数|pH]] 値を変える、変性剤を加えるなどの操作により二次以上の高次構造が変化し、その機能(活性)を失う。これをタンパク質の[[変性]]という。変性したタンパク質においては、[[疎水結合]]、[[水素結合]]、[[イオン結合]]の多くが破壊され、全体にランダムな構造が増加したペプチド鎖の緩んだ状態になることが知られている。タンパク質の変性は、かつて不可逆な過程であると考えられてきたが、現在では多くのタンパク質において、変性は可逆的な過程である事が確認されている。なお、変性したタンパク質を元の高次構造に戻す操作をタンパク質の再生という。タンパク質の再生は、原理としては、畳み込まれたペプチド鎖を一旦完全にほどき、数時間かけてゆっくりと畳み込むよう条件を細かく調整・変化させることで行われている。<br /> <br /> === タンパク質の折り畳み ===<br /> 特定のアミノ酸配列に対して、存在しうる安定な高次構造が複数存在するにもかかわらず、生体内では特定の遺伝子から特定の機能を持つ高次構造をとったタンパク質が合成できるかは、必ずしも明らかではない。[[クリスチャン・アンフィンセン]]の実験などで判明した多くのタンパク質が変性した後にもその高次構造の再生が可能なことから、一次構造それ自体が、高次構造のかなりの部分を決めていることは疑いがなく、これは「アンフィンセンのドグマ」と呼ばれる&lt;ref name=Take85 /&gt;。しかし、先のタンパク質の再生は数時間かかる操作(実際には、二次構造の畳み込みはかなり迅速に起こっていて、三次構造の確定に時間がかかるらしい)であるのに対し、生体内でのタンパク質の合成は数十秒から一分で完了する。さらに、発見された「アンフィンセンのドグマ」に反する事例からも、タンパク質分子を高速に畳み込み、正しい高次構造へと導く因子の存在が考えられている&lt;ref name=Take85 /&gt;(例:タンパク質ジスルフィドイソメラーゼ、プロリンシストランスイソメラーゼ、[[分子シャペロン]])。また、生体内では間違った立体構造をしているタンパク質はそのタンパク質の[[リシン|Lys]]のアミノ基にポリ[[ユビキチン]]が[[共有結合]]で結合した後に、[[プロテアソーム]]によって分解される。<br /> <br /> タンパク質は周囲の環境の変化によりその高次構造を変化させ、その機能を変えることができる。タンパク質である[[酵素]]は、その触媒する反応の速度を条件に応じて変化させることができる。<br /> <br /> === 立体構造の決定 ===<br /> 上記のようなタンパク質の高次構造は、[[X線結晶構造解析]]、[[NMR]](核磁気共鳴)、[[電子顕微鏡]]などによって測定されている。また、[[タンパク質構造予測]]による理論的推定なども行われている。タンパク質の立体構造と機能は密接な関係を持つことから、それぞれのタンパク質の立体構造の解明は、その機能を解明するために重要である。いずれ、ほしい機能にあわせてタンパク質の立体構造を設計し、合成できるようになるだろうと考えられている。<br /> <br /> これまでの研究により構造が解明されたタンパク質については、[[蛋白質構造データバンク]]&lt;ref&gt; (PDB) [http://www.pdbj.org/index_j.html]&lt;/ref&gt;によりデータの管理が行われており、研究者のみならず一般の人でもそのデータを自由に利用、閲覧できる。<br /> <br /> == 物性 ==<br /> === 熱力学的安定性 ===<br /> タンパク質は、それぞれのアミノ酸配列に固有の立体構造を自発的に形成する。このことから、タンパク質の天然状態は熱力学的な最安定状態(最も自由エネルギーが低い状態)であると考えられている([[:en:Anfinsen&#039;s dogma|Anfinsenのドグマ]])。<br /> <br /> タンパク質の立体構造安定性は天然状態と変性状態の[[自由エネルギー]]の差 &lt;math&gt;\Delta G_{\rm d}&lt;/math&gt;(変性自由エネルギー)で決まる。なお、温度依存性を議論する場合には、安定性の指標として &lt;math&gt;exp(-\Delta G_{\rm d}/kT)&lt;/math&gt; が用いられることもある。通常、タンパク質の安定性は、温度、圧力、溶媒条件等に依存する。従って、それらの条件をある程度変化させると、タンパク質は変性する。<br /> <br /> タンパク質の安定性を決める要因として、[[ファンデルワールス力|ファン・デル・ワールス相互作用]]、[[疎水性相互作用]]、[[水素結合]]、[[イオン結合]]、[[鎖エントロピー]]、[[ジスルフィド結合]]などがある。これらの寄与の大きさは、温度等により変わる。<br /> <br /> 多くのタンパク質は、室温近傍で数十 kJ/mol 程度の&lt;math&gt;\Delta G_{\rm d}&lt;/math&gt;をとる。この非常に小さな&lt;math&gt;\Delta G_{\rm d}&lt;/math&gt;は変性状態に対して天然状態が絶妙なバランスで安定であることを示しており、この性質は&#039;&#039;&#039;限界安定性&#039;&#039;&#039; (marginal stability)と呼ばれている。<br /> <br /> 温度が変化すると、[[変性エンタルピー]]&lt;math&gt;\Delta H_{\rm d}&lt;/math&gt;や[[変性エントロピー]]&lt;math&gt;\Delta S_{\rm d}&lt;/math&gt;は急激に変化するが、それらの変化の大部分は相殺して &lt;math&gt;\Delta G_{\rm d}&lt;/math&gt; に寄与しない([[エンタルピー]]・[[エントロピー]]相殺)。変性熱容量変化&lt;math&gt;\Delta C_{p,\rm d}&lt;/math&gt;は正の値を持ち、タンパク質内部のアミノ酸残基([[アミノ酸|疎水性アミノ酸]]が多い)の水和に伴う水和水の熱容量変化によるものであると考えられている。<br /> <br /> === モルテン・グロビュール状態 ===<br /> タンパク質はその変性の途中で、二次構造はあまり変化しないのに三次構造が壊れた状態を取ることがある。これを&#039;&#039;&#039;モルテン・グロビュール状態&#039;&#039;&#039; (molten globule state) とよぶ&lt;ref&gt;東京大学の和田昭允教授の命名による&lt;/ref&gt;。この状態は高塩濃度下かつ低pHの条件で安定に存在することがあり、タンパク質の折り畳みの初期過程を反映したものであると考えられている。<br /> <br /> === 熱変性・低温変性 ===<br /> タンパク質は高温になると変性する。これは熱変性と呼ばれる。加熱するとタンパク質の一次構造が変化することはほとんど無いが、二次以上の高次構造は崩れやすい。約60℃以上になると、周囲に軽く結びつき水和状態をつくる水分子が振動し高次結合部分が解け、細長い状態になる。さらに内部に封じられた疎水部分が露出し、他のポリペプチドの露出部分と引き合い、全体に詰まった状態になる。通常は透明で液状の卵白が、加熱されると白い固形に変化するのはこの原理からである&lt;ref name=Take34 /&gt;。<br /> <br /> また、低温でも変性を起こすが、通常のタンパク質が低温変性を起こす温度は0 ℃以下である。タンパク質の安定性は変性自由エネルギー&lt;math&gt;\Delta G_{\rm d}&lt;/math&gt;で決まる。変性熱容量は室温付近でほぼ一定値であるため、&lt;math&gt;\Delta G_{\rm d}&lt;/math&gt;の温度依存性は上に凸の曲線になる。この曲線と&lt;math&gt;\Delta G_{\rm d} = 0&lt;/math&gt;の交点が低温変性と熱変性の温度である。<br /> <br /> === 酸変性・アルカリ変性 ===<br /> タンパク質は[[水素イオン指数|pH]]の変化によっても変性する。pHが極端に変化すると、タンパク質の表面や内部の荷電性極性基([[グルタミン酸|Glu]]、[[アスパラギン酸|Asp]]、[[リシン|Lys]]、[[アルギニン|Arg]]、[[ヒスチジン|His]])の荷電状態が変化する。これによりクーロン相互作用によるストレスがかかり、タンパク質が変性する。<br /> <br /> === 圧力変性 ===<br /> タンパク質は圧力変化によって変性することが知られている。通常のタンパク質は常圧(0.1 M[[パスカル|Pa]])近傍でもっとも安定であり、数100MPa程度で変性する。[[キモトリプシン]]は例外的であり、100 MPa 程度でもっとも安定である。そのため、温度によっては変性状態にあるものが加圧によって巻き戻ることがある。圧力変性は天然状態よりも変性状態の体積が小さいために起こるものであり、[[ルシャトリエの原理]]で説明できる。<br /> <br /> === 変性剤による変性 ===<br /> [[尿素]]や[[グアニジン]]塩酸は水素結合によるタンパク質の構造安定性を、結合間に割り込むことで低下させる作用を持つため、その溶液中でタンパク質は変性する。このようにタンパク質を変性させる作用をもつ物質は変性剤と呼ばれる。また通常は変性剤とは呼ばれないが、界面活性剤もタンパク質を変性させる作用がある。<br /> <br /> == 機能 ==<br /> タンパク質は[[生物]]に固有の物質である。その合成は生きた[[細胞]]の中で行われ、合成されたものは生物の構造そのものとなり、あるいは酵素などとして生命現象の発現に利用される。また、類似のタンパク質であっても、生物の[[種 (分類学)|種]]が異なれば一次構造が異なることは普通である。タンパク質は[[アミノ酸]]が多数結合した[[高分子]]化合物であるが、人工的な高分子のように単純な繰り返しではなく、順番がきっちりと決定されている。これは、そのアミノ酸の種と順番が[[デオキシリボ核酸|DNA]]に暗号で記述されていることによる。遺伝子暗号は往々にしてその形質に関係するタンパク質の設計図であると考えられる([[一遺伝子一酵素説]])。[[フリードリヒ・エンゲルス|エンゲルス]]は「&#039;&#039;&#039;生命はタンパク質の存在様式である&#039;&#039;&#039;」と言ったが、故のないことではない。<br /> <br /> タンパク質の生体における機能は多種多様であり、たとえば次のようなものがある&lt;ref name=Take54&gt;[[#武村(2011)|武村(2011)、p.54-60、第二章 たんぱく質の作られ方、第一節 体をつくるあげるたんぱく質]]&lt;/ref&gt;。<br /> ;酵素タンパク質<br /> :[[代謝]]などの[[化学反応]]を起こさせる[[触媒]]である[[酵素]]&lt;ref name=Take98&gt;[[#武村(2011)|武村(2011)、p.98-113、第三章 たんぱく質のはたらき、第一節 たんぱく質はたんぱく質を分解する]]&lt;/ref&gt;。細胞内で情報を伝達する多くの役目も担う&lt;ref name=Take113&gt;[[#武村(2011)|武村(2011)、p.113-123、第三章 たんぱく質のはたらき、第二節 体のはたらきを維持するたんぱく質を]]&lt;/ref&gt;。<br /> ;構造タンパク質<br /> :生体構造を形成するタンパク質:[[コラーゲン]]、[[ケラチン]]など<br /> ;[[輸送タンパク質]]<br /> :何かを運ぶ機能を持つ種類で、酸素を運ぶ赤血球中のヘモグロビンや血液中に存在し[[脂質]]を運ぶ[[アルブミン]]、[[コレステロール]]を運ぶ[[アポリポタンパク質]]などが当たる&lt;ref name=Take113 /&gt;。<br /> ;[[貯蔵タンパク質]]<br /> :[[栄養]]の貯蔵に関与するタンパク質であり、卵白中の[[オボアルブミン]]や細胞中で[[鉄]]イオンを貯蔵する[[フェリチン]]や[[ヘモシデリン]]などである&lt;ref name=Take113 /&gt;。<br /> ;収縮タンパク質<br /> :運動に関与するタンパク質。[[筋肉]]を構成する筋原繊維の[[アクチン]]、[[ミオシン]]など。細長いフィラメントを構成し、互いが滑りあう事で筋肉の収縮や弛緩を起こす&lt;ref name=Take54 /&gt;。<br /> ;防御タンパク質<br /> :[[免疫]]機能に関与する種類であり、[[抗体]]とも言われる。[[B細胞]]によって作られる[[グロブリン]]がこれに当たる&lt;ref name=Take113 /&gt;。<br /> ;調節タンパク質<br /> :DNAのエンハンサーと結合して遺伝発現を調整するタンパク質や、細胞内で[[カルシウム]]を使って他のたんぱく質の働きを調整する[[カルモジュリン]]などが当たる&lt;ref name=Take113 /&gt;。<br /> <br /> その他、よく知られたタンパク質に[[下村脩]]が発見した[[蛍光]]に関わる提灯形状のタンパク質である[[GFP]]&lt;ref name=Take85 /&gt;や[[RFP (生物学)|RFP]]などがある。特定波長域の励起光を受けると蛍光を発する。一部の生物([[オワンクラゲ]], [[スナギンチャク]]など)にみられる。<br /> <br /> これらのタンパク質が機能を発揮する上で最も重要な過程に、特異的な会合(結合)がある。酵素および抗体はその基質および抗原を特異的に結合することにより機能を発揮する。また構造形成、運動や情報のやりとりもタンパク質分子同士の特異的会合なしには考えられない。この特異的会合は、基本的には二次〜四次構造の形成と同様の原理に基づき、対象分子との間に複数の[[疎水結合]]、[[水素結合]]、[[イオン結合]]が作られ安定化することで実現される。<br /> <br /> == 組成 ==<br /> タンパク質は[[炭素]]、[[酸素]]、[[窒素]]、[[水素]](重量比順)を必ず含む。どのようなアミノ酸から構成されているかによって、組成比は多少異なる。しかしながら、生体材料においては窒素の重量比が16%前後の値をとることが多いため、窒素量Nの&lt;!--6.25--&gt;6.3倍を粗蛋白量と定義する。<br /> <br /> このほか、[[システイン]]、[[シスチン]]、[[必須アミノ酸]]である[[メチオニン]]に由来する[[硫黄]]の組成比が高く、さらに[[リン酸]]の形でタンパク質に結合されている[[リン]]も多い。[[ジブロモチロシン]]に由来する[[臭素]]、[[ジヨードチロシン]]、[[トリヨードチロシン]]、[[チロキシン]]に由来する[[ヨウ素]]がわずかに含まれることがある。[[ヘモグロビン]]や多くの酵素に含まれる[[鉄]]、[[銅]]や、一部の[[酸化還元酵素]]に含まれる[[セレン]]([[セレノシステイン]]の形をとる)などもある。<br /> <br /> == タンパク質の栄養価 ==<br /> タンパク質の[[栄養素]]としての価値は、それに含まれる[[必須アミノ酸]]の構成比率によって優劣がある。これを評価する基準としては、動物実験によって求める[[生物価]]と[[タンパク質正味利用率]]、化学的に、タンパク質を構成するアミノ酸の比率から算出する[[プロテインスコア]]、[[ケミカルスコア]]、[[アミノ酸スコア]]がある。<br /> <br /> 化学的に算定する後三者の方法は、算定方法に細かな違いがあるが、最終的には必須アミノ酸各々について標品における含量と標準とされる一覧とを比較し、その中で最も不足しているアミノ酸(これを第一制限アミノ酸という)について、標準との比率を百分率で示すもの。この際、数値のみだけでなく、必ず第一[[制限アミノ酸]]の種類を付記することになっている。<br /> <br /> === 生物価(BV) ===<br /> 生物価(BV)とは、吸収されたタンパク質の窒素量に対して,体に保持された窒素量の比を百分率で示した値のこと。内因性の糞尿への排泄量を補正する。<br /> <br /> 生物価(BV)=体内保留窒素量/吸収窒素量×100(%)<br /> <br /> という式で表される。<br /> <br /> === 正味タンパク質利用率(NPU) ===<br /> 正味タンパク質利用率(NPU)とは、摂取したタンパク質(窒素)のどれだけの割合が体内でタンパク質(窒素)として保持されたかを示した値のこと。<br /> <br /> 正味タンパク質利用率(NPU)=体内保留窒素/摂取窒素×100=生物価×消化吸収率(%)<br /> <br /> という式で表される。<br /> <br /> ==タンパク質の必要量と摂取基準==<br /> ===必要量===<br /> 成人の日本人のタンパク質の推定平均必要量(g/kg 体重/日)は、0. 72(g/kg 体重/日)であるとされている。これは、窒素出納実験により測定された良質たんぱく質の窒素平衡維持量をもとに、それを日常食混合たんぱく質の消化率で補正して推定平均必要量を算定している。<br /> <br /> タンパク質の推定平均必要量(g/kg 体重/日)=0. 65(窒素平衡維持量)(g/kg 体重/日)÷ 0. 90(消化率)=0. 72(g/kg 体重/日)&lt;ref name=mhlw&gt;「{{PDFlink|[http://www.mhlw.go.jp/shingi/2009/05/dl/s0529-4f.pdf たんぱく質]}}」『[http://www.mhlw.go.jp/shingi/2009/05/s0529-4.html 日本人の食事摂取基準」(2010年版)]』&lt;/ref&gt;<br /> <br /> 例えば体重70kgの成人の日本人ならタンパク質の必要量は、50g/日となる。<br /> <br /> ===摂取基準===<br /> 2003年、[[世界保健機関]](WHO)と[[国連食糧農業機関]](FAO)は「食事、栄養と生活習慣病の予防&lt;ref name=&quot;whofao2003&quot;&gt;Report of a Joint WHO/FAO Expert Consultation &#039;&#039;[http://www.fao.org/docrep/005/ac911e/ac911e00.htm Diet, Nutrition and the Prevention of Chronic Diseases]&#039;&#039;, 2003&lt;/ref&gt;」(&#039;&#039;Diet, Nutrition and the Prevention of Chronic Diseases&#039;&#039;) を報告している。<br /> <br /> {| class=&quot;wikitable&quot; <br /> |+ 栄養摂取目標の範囲(抄)&lt;ref name=&quot;whofao2003&quot; /&gt;&lt;br /&gt; (5.1.3 表6)<br /> ! colspan=&quot;2&quot; | 食物要素 !! 目標 (総エネルギーに対する%)<br /> |-<br /> |colspan=&quot;2&quot; | [[たんぱく質]]|| style=&quot;text-align:center&quot; | 10-15%<br /> |}<br /> {{main|食生活指針}}<br /> <br /> 一日のエネルギー必要量は、男性では2660(kcal)、女性では1995(kcal)であり、タンパク質のエネルギー量は4 kcal/gであり、仮に15%の値を当てはめると、以下のとおりとなる。<br /> *男性では、2660 kcal/日 x 0.15 / 4 kcal/g =100g/日<br /> *女性では、1995 kcal/日 x 0.15 / 4 kcal/g =75g/日<br /> <br /> ===過剰摂取===<br /> [[世界保健機関]]の2007年の報告では、タンパク質の過剰な摂取は腎臓疾患や[[糖尿病性腎症]]を悪化させるとされている&lt;ref&gt;『タンパク質・アミノ酸の必要量 WHO/FAO/UNU合同専門協議会報告』[[日本アミノ酸学会]]監訳、医歯薬出版、2009年05月。ISBN 978-4263705681 邦訳元 &#039;&#039;[http://whqlibdoc.who.int/trs/WHO_TRS_935_eng.pdf Protein and amino acid requirements in human nutrition]&#039;&#039;, Report of a Joint WHO/FAO/UNU Expert Consultation, 2007&lt;/ref&gt;。<br /> <br /> [[炭水化物]]とタンパク質の摂取量によって10段階に分けて分析し、炭水化物の摂取量が1段階減り、タンパク質の摂取量が1段階増えるごとに、[[心筋梗塞]]や[[脳卒中]]の発症のリスクが4%ずつ増え、低炭水化物・高タンパク質のグループでは、そうでないグループに比べて発症リスクが最大1.6倍高まったとの報告がある&lt;ref&gt;[http://www.yomidr.yomiuri.co.jp/page.jsp?id=61435 低炭水化物ダイエットご用心…発症リスク高まる]2012.07.08読売新聞。スウェーデンの30〜49歳の女性43396人{{信頼性要検証|date=2012年11月}}&lt;/ref&gt;。<br /> <br /> 2002年のWHOの報告書では、カルシウムの摂取量が多い国に骨折が多いという「[[カルシウム・パラドックス]]」の理由として、タンパク質によるカルシウム必要量を増大させる酸性の負荷の影響があるのではないか、と推論されている&lt;ref name=&quot;who2002&quot;&gt;joint FAO/WHO expert consultation. &quot;[http://www.fao.org/docrep/004/Y2809E/y2809e0h.htm#bm17.9 Chapter 11 Calcium]&quot;, &#039;&#039;[http://www.fao.org/DOCREP/004/Y2809E/y2809e00.htm Human Vitamin and Mineral Requirements]&#039;&#039;, 2002.&lt;/ref&gt;。<br /> [[ハーバード大学]]で、[[栄養学]]を教えている[[ウォルター・ウィレット]]教授は、タンパク質を摂取しすぎれば酸を中和するために骨が使われるので骨が弱くなる可能性がある、として注意を促している&lt;ref name=&quot;herberd2003&quot;&gt;[[ウォルター・ウィレット|ウォルター C. ウィレット]] 『太らない、病気にならない、おいしいダイエット-ハーバード大学公式ダイエットガイド』 光文社、2003年5月。174〜175頁。ISBN 978-4334973964。(原著 &#039;&#039;Eat, Drink, and Be Healthy&#039;&#039;, 2001)&lt;/ref&gt;。<br /> <br /> 65歳以上の男性に2g/kg体重/日以上のタンパク質を摂取させると、血中尿素窒素が10.7mmol/L以上に上昇し、高窒素血症が発症することが報告されていること等により、成人においては年齢にかかわらず、タンパク質摂取は2.0g/kg体重/日未満に留めるのが適当とされている&lt;ref name=mhlw/&gt;。70kgの体重のヒトならばタンパク質140g/日に相当し、摂取基準の1.5-2倍に相当する。<br /> <br /> == タンパク質の定量法 ==<br /> [[栄養学]]ではタンパク質全体の量を測定することが重要であり、また[[生化学]]で特定のタンパク質を分離精製した際にも、それがどの程度の量であるかを求める必要がある。これらのために一般的なタンパク質の定量分析法が多数開発されている。<br /> <br /> 精度の高い方法としては、[[燃焼]]後に[[窒素]]量を測定する[[デュマ法]]、[[硫酸]]分解後に[[アンモニア]]量を測定する[[ケルダール法]]などがある。<br /> <br /> またより簡便な方法としては、[[紫外可視近赤外分光法]]、[[アミド結合]]([[ペプチド結合]])の検出を用いた[[ビウレット法]]、それに[[フェノール]]性[[水酸基]]等の検出を組み合わせた[[ローリー法]]、[[色素]]との結合を観測する[[ブラッドフォード法]]などがある。<br /> <br /> == 特殊なタンパク質 ==<br /> [[イエローストーン国立公園]]では、熱水の中で生育する細菌が発見されている。このような高温環境で生きられる生物のタンパク質にはどのような特徴があるか、全貌は解明されておらず、外見上も他のタンパク質と差は認められない。分析の結果、熱に弱いアミノ酸(アスパラギン・システイン・メチオニンなど)の含有量が比較的少なく、逆にプロリンが多く含まれていることが判明した&lt;ref name=Take123&gt;[[#武村(2011)|武村(2011)、p.123-133、第三章 たんぱく質のはたらき、第三節 たんぱく質のお湯加減―いろいろな温度で働くたんぱく質たち―]]&lt;/ref&gt;。<br /> <br /> 逆に低温で機能を失わないタンパク質は[[不凍タンパク質]]と呼ばれ、[[魚類]]から発見され1969年に単離に成功した。このタンパク質が低温で活動できるメカニズムは、[[氷晶核]]が形成されにくい構造を持つためと考えられる&lt;ref name=Take123 /&gt;。<br /> <br /> == 複合タンパク質 ==<br /> タンパク質には、アミノ酸配列のヌクレオチドだけで構成される単純タンパク質と、その外側にアミノ酸以外の装飾をもつ複合タンパク質がある。複合タンパク質が纏う装飾には、主に糖とリン酸がある&lt;ref name=Take134&gt;[[#武村(2011)|武村(2011)、p.134-145、第三章 たんぱく質のはたらき、第四節 たんぱく質の装飾品と、その利用]]&lt;/ref&gt;。<br /> <br /> タンパク質が付随させる糖は[[単糖]]からなる糖鎖であり、アミノ酸アスパラギンの残基に、[[N-アセチルグルコサミン]]と[[マンノース]]が繋がったコア構造という土台の先に、分岐も含め多様な構造をつくる。ただし、このようにタンパク質に接続する単糖の種類は9種&lt;ref&gt;[[ガラクトース]]、[[N-アセチルグルコサミン]]、[[N-アセチルガラクトサミン]]、[[マンノース]]、L- [[フコース]]、[[グルコース]]、[[キシロース]]、[[グルクロン酸]]、[[シアル酸]](武村(2011)、p.139)&lt;/ref&gt;しか見つかっていない。例えば赤血球の細胞膜をつくるタンパク質に繋がる糖鎖の種類が、[[ABO式血液型]]を決定づけている&lt;ref name=Take134 /&gt;。この糖鎖は、その種類ごとに異なる[[レクチン]]という他のタンパク質があり、この組み合わせで情報交換を行う役割を担っている&lt;ref name=Take134 /&gt;。<br /> <br /> アミノ酸のトレオニンやチロシンなどが持つ水酸基残基と結びつくリン酸は、[[アデノシン三リン酸]](ATP)から供給され、リン酸を放出したATPは[[アデノシン二リン酸]]になる。リン酸化はタンパク質の働きを活性化したり、逆に抑制する働きを持つ。ひとつのタンパク質の活性化は次のタンパク質のリン酸化を促し、これが連続することで多岐にわたる情報伝達が行われる。この様子は「リン酸化カスケード」と呼ばれる&lt;ref name=Take134 /&gt;。<br /> <br /> == タンパク質の生体内分解 ==<br /> 生体内部のタンパク質は必要な時に作られ、使われ続けるうちに充分な機能を発揮できなくなる。[[シャペロン|分子シャペロン]]などによる修復を受けるが、やがてタンパク質も寿命を迎える。その期間は種類によって異なり、数ヶ月のものから数十秒しか持たないものもあり、それぞれ生体内部で分解される&lt;ref name=Take145&gt;[[#武村(2011)|武村(2011)、p.145-153、第三章 たんぱく質のはたらき、第五節 たんぱく質の「死」]]&lt;/ref&gt;。<br /> <br /> その判断が下されるメカニズムは明らかになっていないが、タンパク質の寿命が近づくとリジン残基に[[ユビキチン]]という非常に小さなタンパク質が付着する。1つだけでは特に変化は起こらないが、次々に結合して4個以上のユビキチン鎖状になると、タンパク質は[[プロテアソーム]]と呼ばれる筒状構造体の中に導かれ、この中でペプチドにまで分解される。この一連の反応は&#039;&#039;&#039;ユビキチン・プロテアソームシステム&#039;&#039;&#039;と呼ばれる&lt;ref name=Take145 /&gt;。<br /> <br /> もうひとつの主要なタンパク質分解機構として&#039;&#039;&#039;[[オートファジー]]&#039;&#039;&#039;があり、一度に多くのタンパク質が分解されるため、飢餓状態において重要度の低いタンパク質を分解してアミノ酸を補充する場合などに機能する。<br /> <br /> == 脚注 ==<br /> {{脚注ヘルプ}}<br /> {{reflist|2}}<br /> <br /> == 参考文献 ==<br /> * {{Cite book|和書|author = |title = 生化学辞典第2版|edition = 第2版第6刷|year = 1995|publisher = [[東京化学同人]]|isbn = 4-8079-0340-3|page = |ref = 生化学辞典(2版)}}<br /> * {{Cite book|和書|author =武村政春 |title = たんぱく質入門|edition = 第1刷|year = 2011|publisher = [[講談社]]|isbn = 978-4-06-257730-4|page = |ref = 武村(2011)}}<br /> * {{Cite journal|和書|author=山口迪夫 |title=食べ物と酸・アルカリ : 「酸性食品・アルカリ性食品」の理論をめぐる矛盾点(身の回りの酸・塩基)(&lt;特集&gt;酸と塩基) |date=1989-12-20 |publisher=社団法人日本化学会 |journal=化学と教育 |volume=37 |number=6 |naid=110001826976 |pages=606-609 |ref=harv}}<br /> <br /> == 関連項目 ==<br /> {{Commons category|Proteins}}<br /> * [[Gタンパク質]]<br /> * [[キサントプロテイン反応]]<br /> * [[ビウレット反応]]<br /> * [[ニンヒドリン反応]]<br /> * [[ペプチド固相合成法]]<br /> * [[無細胞タンパク質合成系]]<br /> * [[翻訳 (生物学)|翻訳]]<br /> * [[コドン]]<br /> * [[アミノ酸]]<br /> * [[遺伝子]]<br /> * [[セントラルドグマ]]<br /> * [[プロテオーム]]<br /> * [[オーミクス]]<br /> * [[人工タンパク質]]<br /> <br /> == 外部リンク ==<br /> * [http://www.pdbj.org/index_j.html 日本蛋白質構造データバンク]<br /> * {{Mpedia|英語版記事名=Proteins|英語版タイトル=Proteins}}<br /> <br /> {{タンパク質を構成するアミノ酸}}<br /> {{一次構造}}<br /> {{二次構造}}<br /> {{三次構造}}<br /> {{四次構造}}<br /> {{タンパク質}}<br /> {{酵素}}<br /> <br /> {{デフォルトソート:たんはくしつ}}<br /> [[Category:タンパク質|*]]</div> 2400:2653:E1A1:F100:9C2F:27AA:A560:786
Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46