Warning: Undefined variable $type in /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php on line 3

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /home/users/1/sub.jp-asate/web/wiki/includes/json/FormatJson.php on line 297

Warning: Trying to access array offset on value of type bool in /home/users/1/sub.jp-asate/web/wiki/includes/Setup.php on line 660

Warning: session_name(): Session name cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/Setup.php on line 834

Warning: ini_set(): Session ini settings cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 126

Warning: ini_set(): Session ini settings cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 127

Warning: session_cache_limiter(): Session cache limiter cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 133

Warning: session_set_save_handler(): Session save handler cannot be changed after headers have already been sent in /home/users/1/sub.jp-asate/web/wiki/includes/session/PHPSessionHandler.php on line 140

Warning: "continue" targeting switch is equivalent to "break". Did you mean to use "continue 2"? in /home/users/1/sub.jp-asate/web/wiki/languages/LanguageConverter.php on line 773

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/Feed.php on line 294

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/Feed.php on line 300

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46

Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46
http:///mymemo.xyz/wiki/api.php?action=feedcontributions&feedformat=atom&user=210.225.210.85 miniwiki - 利用者の投稿記録 [ja] 2024-06-08T00:06:50Z 利用者の投稿記録 MediaWiki 1.31.0 燃焼室 2018-09-04T00:14:29Z <p>210.225.210.85: /* ガソリンエンジンの燃焼室 */</p> <hr /> <div>&#039;&#039;&#039;燃焼室&#039;&#039;&#039;(ねんしょうしつ)は、[[燃料]]が[[燃焼]]する空間であり、[[熱機関]]に於いては燃焼(酸化)により熱エネルギーを発生する部位である。<br /> <br /> == 内燃機関 ==<br /> [[Image:Combustion chamber (PSF).png|thumb|[[ジェットエンジン]]の内燃室の模式図]]<br /> [[内燃機関]]における燃焼室は、&#039;&#039;&#039;内燃室&#039;&#039;&#039;と呼ばれることもある。<br /> <br /> [[燃焼]]で発生した高熱の[[ガス]]([[排気ガス]])は、元々の燃料や混合気よりも遙かに大きな容積に膨張し、大きな圧力と熱量を放出する。例えば、[[ガスタービン]]の場合にはこの圧力を利用して軸に接続された[[タービン|タービンブレード]]を回転させることが可能であり、[[ロケットエンジン]]の場合には噴射[[ノズル]]によって圧力が解放される方向を指定することで、圧力を[[推力]]として利用出来る。<br /> <br /> [[レシプロエンジン]]などは間欠燃焼であり、吸気によっても燃焼室表面の温度が下げられるのに対し、[[ロケットエンジン]]や[[ジェットエンジン]]、[[ガスタービン]]などは基本的に連続燃焼であり、燃焼室の冷却は機関の寿命に大きく影響する。<br /> <br /> === レシプロエンジン ===<br /> レシプロエンジンの燃焼室は、[[上死点]]付近にある時の[[ピストン]]や[[シリンダー]]、[[シリンダーヘッド]]などで囲まれた空間である。<br /> <br /> ==== ガソリンエンジンの燃焼室 ====<br /> 通常はシリンダーヘッドに[[点火プラグ]]や[[ポペットバルブ|吸排気バルブ]]が設けた半球形の凹みが設けられ、ピストン冠面やシリンダー上端部とともに「混合気を燃焼させる部屋」である&#039;&#039;&#039;燃焼室&#039;&#039;&#039;を形成する。ピストン冠面は必ずしも平面もしくは軽い膨隆があるが、バルブに対応する凹みが設けられることが多い。[[ターボチャージャー]]などの[[過給機]]付きエンジンでは圧縮比を下げる目的で窪みが設けられる場合もある。<br /> <br /> ガソリンエンジンの燃焼室には様々な形状のものが存在し、その形状によってそのエンジンの[[圧縮比]]が大きく左右され、エンジンの効率(出力や燃費)に影響する。<br /> <br /> エンジン設計者は、燃焼室やシリンダー内の過熱(機械的強度を下げるとともに、[[NOx]]の生成を促す)を避けつつ冷却損失を小さくし、混合気の完全燃焼を目的に様々な燃焼室形状を考案してきた。そのために有効なのが、熱効率が低下する表面積の大きくなる細長く大きな燃焼室ではなく、できるだけ表面積が小さいコンパクトな燃焼室の採用であった。<br /> <br /> こうした改良の中で混合気が燃焼室のなかで[[乱流]]を形成することが燃焼効率の改善に良いことも分かってきた。半球型やペントルーフ型などでは、[[スワール]](横渦流)や[[タンブル]](縦渦流)を形成するようにヘッドとインテークの形状を工夫している。またシリンダ断面積とヘッド断面積をかえてピストン上昇時には挟み込まれた部分で噴流を発生する[[スキッシュ]]エリアが設けらえることも多い。初期の排気対策では[[CVCC]]のように希薄混合気に点火するために補助燃焼室や補助吸気バルブなどが付加されることがあった。<br /> <br /> 通常、点火プラグは燃焼が伝播する速度を見込んで圧縮上死点の少し前で点火を行うが、それ以前にシリンダー内で自己着火する[[ノッキング]]が発生することがある。ノッキングによる衝撃はピストンやシリンダーヘッドの損傷につながるため、通常は圧縮比を制限したり[[ノッキングセンサー]]によりノッキングを検知すると点火時期を遅らせる方法がとられる。<br /> <br /> 燃焼室によるノッキングの起きにくさは[[メカニカルオクタン価]]と呼ばれ、これが高いエンジンはより高い圧縮比が実現できるため高出力で高燃費となる。メーカーはメカニカルオクタン価を上げるためにさまざまなシミュレーションや燃焼状態の観察を行っている。<br /> <br /> 初期のガソリンエンジンで多く見られた[[サイドバルブ]]の燃焼室では、平たく横方向に長い形状を呈しており、この形状を指して[[フラットヘッド]]と呼ばれる場合が多かった。しかしこのような形状は燃焼室の表面積が大きいため燃焼効率に劣り、圧縮比もある程度までで頭打ちとなる一方、低オクタン価の燃料が使用可能なことから、発電機などでは依然として多く使われている。理想的な半球型の燃焼室を実現しやすいことから、出力を必要とするエンジンでは頭上弁式([[OHV]]、[[OHC]])では下記のような燃焼室が登場した。<br /> <br /> ===== バスタブ型 =====<br /> サイドバルブからOHVに移行した初期の段階で登場した形式で、燃焼室形状は文字通り洋式の[[浴槽]]のような長方形の形状を採っている。吸排気バルブはシリンダーヘッドに対して垂直に配置されるため、機械加工が容易で最低限の設計変更でサイドバルブをOHV化可能であったため、多くのエンジンでこの形式が採用された。しかし、燃焼室内の乱流形成が比較的容易な反面、燃焼効率に劣るため、次第に後述の形式に改良されていくことになった。<br /> <br /> ===== 楔型 =====<br /> 燃焼室の形状が[[楔]]のような[[直角三角形]]様を呈しているもの。吸排気バルブがシリンダーヘッドに対して斜めに配置されるため、[[ターンフロー]]エンジンにおいては[[ポート加工|吸排気ポート]]の曲がりがゆるやかに設計でき、圧縮比もバスタブ型と比較して高く採ることが可能となった。OHC形式のターンフローエンジンにおいては、後述の多球型燃焼室が登場するまでは主流の形式であった。<br /> <br /> ===== 半球型 =====<br /> [[Image:Malossi 70cc Morini cylinder head.jpg|thumb|200px|[[イタリア]]・[[:en:Malossi|Malossi]]社の[[スクーター]]用[[2ストローク機関|2ストロークエンジン]]のシリンダーヘッド&lt;br /&gt;2ストローク用ヘッドは燃焼室と点火プラグのみを備えたもので吸排気バルブによる燃焼室形状の制約がないため今日でも大きなスキッシュエリアを持った理想的な半球型燃焼室を採用するものが多い]]<br /> 燃焼室の形状が[[球]]を半分もしくは1/3程度に切り取った形状を呈しているもの。[[クロスフロー]]式シリンダーヘッドの登場と共に現れた形式で、燃焼室の表面積が容積に対して小さくなるので冷却損失を小さくでき、燃焼の圧力が均等に広がる流体力学的に理想的な形状のため、多くのエンジンでこの形状が使用された。<br /> <br /> 代表的なものとしてはHemispherical(ヘミスフェリカル:半球状の~)という燃焼室形状がそのまま名称となっている[[HEMI]]エンジンがある(現行のHEMIエンジンは完全な半球形ではなくなっている)。<br /> <br /> 変わった所では吸気をOHV、排気をサイドバルブで行うとなる[[ローバー]]の[[:en:IOE engine|IOEエンジン]]は傾斜した平面のシリンダーヘッドと独特なピストンヘッドおよび排気バルブまわりの形状により半球形(正確には逆半球形)に近似した燃焼室を形成する。<br /> <br /> しかし、欠点として燃焼室内の流体効率が良すぎる故に乱流の形成が行いにくいという点が挙げられ、一部のエンジンでは吸気バルブ以外にごく小さな補助吸気バルブをおくなどの手法で乱流を強制的に引き起こす対策が採られることもあった。([[ミツビシクリーンエアシステム|三菱・MCA-JET]]バルブなど)<br /> <br /> また大きな半球形状を取った場合、圧縮比を高めていくにはピストン側のピストントップを大きく盛り上げる加工も不可欠であったため、ピストン側の重量増加を嫌った設計者によっては、後述の多球型燃焼室を採用して燃焼室の燃焼効率低下を最小限に抑えながら、ピストンの軽量化と同時に圧縮比を高める手法が採られることもあった。<br /> <br /> [[DOHC]]やSOHC[[マルチバルブ]]の普及で吸排気バルブ2本ずつの4バルブ構成が登場してくると平たい[[ポペットバルブ]]の先端で半球の形状が崩れてしまいやすいことや、半球の曲線に合わせてバルブを配置するとバルブ挟み角が極端に広くなってしまいがちなことからマルチバルブエンジンでは後述のペントルーフ型が主流となっていった。<br /> <br /> :;RFVC<br /> :特殊な半球型燃焼室の採用例としては[[本田技研工業]]の[[オートバイ]]部門が、[[1982年]]に[[:en:Baja_1000|Baja_1000]]用ワークスレーサーとして開発した[[ホンダ・XR|XR500R]]に搭載した&#039;&#039;&#039;RFVC&#039;&#039;&#039;(&#039;&#039;&#039;R&#039;&#039;&#039;adial &#039;&#039;&#039;F&#039;&#039;&#039;our &#039;&#039;&#039;V&#039;&#039;&#039;alve &#039;&#039;&#039;C&#039;&#039;&#039;ombustion &#039;&#039;&#039;C&#039;&#039;&#039;hamber/放射状4バルブ燃焼室)が挙げられる。RFVCは複雑な[[ロッカーアーム]]配置により、半球型燃焼室の形状を崩さないように広い挟み角の4本のバルブを放射状に配置した事例であり、[[SOHC]]における[[マルチバルブ]]技術の先駆ともいえる事例でもある。<br /> <br /> :RFVCは[[1983年]]に[[ホンダ・XLX250R|XLX250R]]より市販車両にも導入され、後に[[DOHC]]ヘッド化されて[[ホンダ・CBX250|CBS250RS]]・[[ホンダ・GB|GB250クラブマン]]などの各オンロードバイクにも搭載された。しかしRFVCはシリンダーヘッドが大きくなってしまう欠点から[[単気筒エンジン]]以外には採用しがたいという致命的な欠点があったものの&#039;&#039;&#039;1つの[[ポート加工|吸排気ポート]]当たり、1つの[[キャブレター]]と1本の[[エキゾーストパイプ]]を配置する&#039;&#039;&#039;という極めて精緻な機構を採用し、単気筒ながらも[[直列2気筒]]に迫る12000rpm以上の最大回転数を誇るハイチューンエンジンとしてその名が広く知られた。<br /> <br /> ===== 多球型 =====<br /> [[Image:Cylinderhead.JPG|thumb|200px|[[:en:Ford_Boss_302_engine|フォード・302エンジン]]の4.9L V8シリンダーヘッド。ハート型燃焼室を持つOHVヘッドである]]<br /> 半球型の亜種と呼べる形式で、燃焼室の形状が複数の球面を組み合わせた形状を呈しているもの。多くの場合吸排気バルブと点火プラグにあわせて3つの球面とすることが多かったため、燃焼室は[[ハート]]の形を呈し、&#039;&#039;&#039;ハート型燃焼室&#039;&#039;&#039;と呼ばれることもあった。<br /> <br /> 半球型に比べて流体力学的には不利な形状であるが、ピストントップを大きく盛り上げることなく圧縮比を高くとることが可能であり、乱流の形成も比較的良好であったことから、吸気1・排気1の2バルブ構成を取るシリンダーヘッドではOHV、OHC、ターンフロー、クロスフローの別なく幅広くこの形式が採用された。半球型燃焼室からの移行の例としては[[三菱・4G5系エンジン|三菱・4G54エンジン]]において、旧来の半球型燃焼室+MCI-JETバルブの組み合わせがオーストラリアの[[三菱・マグナ]]での最終型エンジンではハート型燃焼室に変更され、結果的にMCI-JETバルブが廃止できた事例があげられる。<br /> <br /> また、バスタブ型燃焼室や楔型燃焼室をプライベーターがチューンする際にもこの形式の燃焼室は多用された。具体的には元の燃焼室を一度アルゴン溶接などで埋めてしまい、改めて吸排気バルブ周辺にスキッシュエリアと半球を形成するように削り直すのである。場合によってはバルブシートを一度取り外して、バルブ自体もステムが長い物に交換することでバルブ全体をピストントップに近づけ、ピストントップや時にシリンダー側面にバルブリセスを設けることで極限まで圧縮比を向上させる手法もビッグバルブへの交換の際には行われることがあった。<br /> <br /> :;STDCC<br /> :ハート型以外の形状の採用例としては、[[スズキ_(企業)|スズキ]]の[[オートバイ]]部門が1982年の[[スズキ・GS125E]]から採用した&#039;&#039;&#039;STDCC&#039;&#039;&#039;(&#039;&#039;&#039;S&#039;&#039;&#039;uzuki &#039;&#039;&#039;T&#039;&#039;&#039;win &#039;&#039;&#039;D&#039;&#039;&#039;ome &#039;&#039;&#039;C&#039;&#039;&#039;ombasjon &#039;&#039;&#039;C&#039;&#039;&#039;hamber/2ドーム式燃焼室)が上げられる。STDCCは点火プラグをセンタープラグとして吸排気バルブの中間に配置し、吸排気バルブを中心に2つの半球を並べることで、&#039;&#039;&#039;[[ダルマ]]に似た形状の燃焼室&#039;&#039;&#039;が形成された。STDCCは主に2バルブエンジンに対して広く採用されており、燃焼室内の乱流の形成が良好な事から低速域での粘り強いトルク特性と高燃費を実現できるとした。<br /> <br /> :;TSCC<br /> :STDCCは1980年の[[スズキ・GSX750E]]に導入された&#039;&#039;&#039;TSCC&#039;&#039;&#039;(&#039;&#039;&#039;T&#039;&#039;&#039;win &#039;&#039;&#039;S&#039;&#039;&#039;wirl &#039;&#039;&#039;C&#039;&#039;&#039;ombasjon &#039;&#039;&#039;C&#039;&#039;&#039;hamber/2渦流式燃焼室)がベースとなっている技術である。TSCCはDOHC4バルブエンジンに多球型燃焼室の概念を持ち込んだ事例であり、吸排気バルブを中心に4つの半球が組み合わされ、ダルマが二つ並んだような形状[http://www.mcnews.com.au/NewBikeCatalogue/2001/Suzuki/GSXRimages/6_Head_600p.jpg]を示す事になる。TSCCは後述のペントルーフ型燃焼室と組み合わされたニューTSCCに発展し、現在の[[スズキ・GSX-R]]シリーズにも引き続き採用され続けている。<br /> <br /> ===== ペントルーフ型 =====<br /> [[Image:DOHC-Zylinderkopf-Schnitt.jpg|thumb|200px|DOHCシリンダーヘッドのカットモデル。吸排気バルブの設置角度(バルブ挟み角)が狭くなればなるほど、ペントルーフの頂点は平らに近づいてゆき、圧縮比が高まる事になる]]<br /> DOHCやSOHCのマルチバルブエンジンの登場と共に登場した形式。主に4本の吸排気バルブ(DOHCの場合は3本の吸気バルブ・2本の排気バルブ(=5バルブ)も一部混在し、SOHCの場合は2本の吸気バルブ・1本の排気バルブ(=3バルブ)も一部混在する)の先端形状に合わせて、建物の屋根のような三角形の形状を呈した燃焼室である。半球型に比べて若干流体力学的には不利な形状であるが、点火プラグを吸排気バルブの間に配置出来る&#039;&#039;&#039;センタープラグ&#039;&#039;&#039;が容易に実現でき、火花の伝播効率が非常に良くなることや、バルブ挟み角を狭く取ることで三角形の頂点を低くして圧縮比を高めることも可能で、カムシャフトの間隔を狭めることでDOHCシリンダーヘッドの小型軽量化も可能となることから、現在のガソリンエンジンの主流と言える形式となっている。<br /> <br /> この形式も半球型燃焼室同様に燃焼室内の流体の流れる効率が良すぎる故に乱流の形成が行いにくいという点が挙げられ、メーカーによっては吸気バルブの片方を低回転域で不作動とすることで吸入空気の流速を高めて乱流の形成を促す機構が採用されること(トヨタ・[[T-VIS]]など)もあった。今日では可変バルブ機構の発達により吸気バルブの休止機構と共にバルブタイミングを可変させる手法も確立され、高出力と高燃費を両立することが可能となっている。<br /> <br /> ==== ディーゼルエンジンの燃焼室 ====<br /> [[ディーゼルエンジン]]の燃焼室は、[[燃料噴射装置]]の方式によって、下記の二種類に大別出来る。<br /> <br /> ===== 直接噴射式 =====<br /> &#039;&#039;&#039;オープンチャンバー式&#039;&#039;&#039;や&#039;&#039;&#039;単室式&#039;&#039;&#039;とも呼ばれるこの形式は、噴射ノズルが直接シリンダー内に燃料を噴射する。<br /> そのため、シリンダーヘッド側にはガソリンエンジンのような凹んだ燃焼室は存在せず、ピストントップの&#039;&#039;&#039;キャビティ&#039;&#039;&#039;と呼ばれる凹みに燃料が噴射されて燃焼を行う。すなわちこのピストンキャビティが燃焼室である。<br /> <br /> [[対向ピストン機関|対向ピストンエンジン]]にはシリンダーヘッドが存在せず、対向する2個のピストン冠面とシリンダー壁で燃焼室を構成する。シリンダーの中程が燃焼室となり、この側面に噴射ノズルが備わる直接噴射式である。<br /> <br /> ===== 副室式 =====<br /> 直接噴射式と異なり、シリンダーヘッドに設けられた副燃焼室内に燃料の噴射を行う形式。副燃焼室の形式により、&#039;&#039;&#039;予燃焼室式&#039;&#039;&#039;と&#039;&#039;&#039;渦流室式&#039;&#039;&#039;に細別できる。どちらの形式もピストントップの凹みが&#039;&#039;&#039;主燃焼室&#039;&#039;&#039;と呼ばれ、主燃焼室に対する副燃焼室の容積は、予燃焼室式の場合で30 - 40%程度、渦流室式の場合で70 - 80%程度である。<br /> <br /> 副燃焼室内に[[グロープラグ]]と噴射ノズルが設けられており、寒冷時での始動時はグロープラグからの熱で、副燃焼室の空気を事前に予熱することにより始動を容易にさせて、運転開始後は圧縮によって熱せられた空気が副燃焼室に入り込むことで着火する。着火した燃料は高い流速の火炎となって主燃焼室へ放出される。副燃焼室の主燃焼室側の開口部は「噴口」と呼ばれ、ここで流路を細く絞ることで吸気と火炎に高い流速を与えて[[拡散燃焼]]を助けている。<br /> <br /> 直接噴射式に比べると、熱損失は大きいが、全ての回転域で容易に安定した燃焼状態が得られ、燃焼時間が長いため燃焼時の圧力と温度変化が穏やかで[[窒素酸化物]]と[[炭化水素]]の発生が少なく、[[騒音]](ディーゼルノック)が低く高回転化にも適している。このため、[[コモンレール]]化以前の乗用車用を始めとした小型高回転型エンジンに多数の採用例がある。<br /> <br /> :;予燃焼室式<br /> :[[ボア]]中心付近に、細長くやや小さめの副燃焼室を持つ。この噴口付近の通路に小さな[[グローエンジン|焼玉]]を持つものもある。<br /> <br /> :;渦流室式<br /> :半分程ボアからはみ出た位置に、球形のやや大きめの副燃焼室を持つ。噴口は、予燃焼室式より大きくする事により容積あたりの表面積を最小としてシリンダーヘッドや[[水冷|冷却水]]に熱を奪われることを防ぎ、また球の中心からオフセットする事により圧縮&lt;!--と燃焼--&gt;時に副燃焼室内に強力なスワール(横渦流)を発生し、燃焼効率がさらに高められている。ピストン側の主燃焼室形状には「[[ハート (シンボル)|ハート]]形」や「[[子葉|双葉]]形」があり、吹き出された火炎がシリンダー内でもスワールを形成するようになっている。&lt;br/&gt;[[日産・CDエンジン]]のように、噴射ノズルからの燃料の一部がピストントップの主燃焼室に「直接」届く、噴口よりさらに小径の「副噴口」を持つものがある&lt;ref&gt;{{Cite journal|和書|author=杉原邦彦 |author2=田中利明 |author3=佐々木正博 |author4=上田隆正 |title=副噴口付き渦室式ディーゼル機関の開発 |date=1988-05-05 |journal=日本機械学會誌 |volume=91 |number=834 |naid=110002474402 |pages=414-415 |ref=harv}} - 昭和62年度 日本機械学会賞(技術賞)&lt;/ref&gt;。<br /> <br /> === ロータリーエンジン ===<br /> {{節stub}}<br /> [[ロータリーエンジン]](ヴァンケルエンジン)の燃焼室とは、[[死点|上死点]]付近で[[ローター]]やローターハウジング、サイドハウジング、点火プラグで囲まれた扁平な空間を指す。レシプロエンジンとは異なり、ローターの回転とともに燃焼室がハウジング内の広い範囲を移動する。<br /> <br /> === ガスタービンエンジン ===<br /> &lt;!-- 分けられれば分けてほしい --&gt;<br /> {{節stub}}<br /> {{main|燃焼器}}<br /> <br /> === ジェットエンジン ===<br /> {{節stub}}<br /> {{main|燃焼器}}<br /> <br /> === ロケットエンジン ===<br /> {{main|ロケットエンジン#燃焼室}}<br /> ロケットエンジンの燃焼室は燃焼による反動で推進するために使用される。<br /> <br /> == 外燃機関 ==<br /> {{節stub}}<br /> &lt;!-- 外燃機関で「燃焼室」がなじむかどうか、実はよくわからない。 --&gt;<br /> === 蒸気機関 ===<br /> {{See also|[[ボイラー]]|{{仮リンク|火室 (蒸気機関)|en|Firebox (steam engine)}}}}<br /> 一般的にはボイラーで燃料の燃焼熱を水に与え、高圧蒸気を得て機関を動作させる。蒸気機関車においては、その内の燃料を燃焼させる空間は火室と呼ばれ、その副室が燃焼室と呼ばれる。<br /> &lt;!--=== 蒸気タービン ===--&gt;<br /> &lt;!--=== スターリングエンジン? ===--&gt;<br /> <br /> == 脚注 ==<br /> &lt;references/&gt;<br /> <br /> == 関連項目 ==<br /> * [[シリンダーヘッド]]<br /> * [[ピストン]]<br /> * [[ポペットバルブ]]<br /> * [[死点]]<br /> * [[圧縮比]]<br /> * [[ボイラー]]<br /> <br /> ==外部リンク==<br /> *[http://www2s.biglobe.ne.jp/~h-oka/home/ftr/rfvc.html RFVCエンジン]<br /> *[http://gsx250.wordpress.com/2009/06/29/tscc-twin-swirl-combustion-chamber/ TSCC (Twin Swirl Combustion Chamber) « Gsx250’s]<br /> <br /> {{オートバイ部品と関連技術}}<br /> {{DEFAULTSORT:ねんしようしつ}}<br /> [[Category:自動車エンジン技術]]<br /> [[Category:自動車部品]]<br /> [[Category:往復動機関]]<br /> [[Category:蒸気機関]]<br /> [[Category:ガスタービンエンジン]]<br /> {{Rail-stub}}</div> 210.225.210.85
Warning: Cannot modify header information - headers already sent by (output started at /home/users/1/sub.jp-asate/web/wiki/extensions/HeadScript/HeadScript.php:3) in /home/users/1/sub.jp-asate/web/wiki/includes/WebResponse.php on line 46